
Machine Learning based Compilation

Michael O’Boyle

March, 2014

M. O’Boyle Machine Learning based Compilation March, 2014

1

Overview

• Machine learning - what is it and why is it useful?

• Predictive modelling

• OSE

• Scheduling and low level optimisation

• Loop unrolling

• Limits and other uses of machine learning

• Future work and summary

M. O’Boyle Machine Learning based Compilation March, 2014

2

Machine Learning as a solution

• Well established area of AI, neural networks, genetic algorithms etc. but what
has AI got to do with compilation?

• In a very simplistic sense machine learning can be considered as sophisticated
form of curve fitting.

INPUTS

OUTPUTS

. .

.
.

. . .

M. O’Boyle Machine Learning based Compilation March, 2014

3

Machine Learning

• The inputs are characteristics of the program and processor. Outputs, the
optimisation function we are interested in, execution time power or code size

• Theoretically predict future behaviour and find the best optimisation

. .

.
.

. . .

Program characteristics

Execution

time

. .

.
.

. . .

Program characteristics

Best
Transformation

M. O’Boyle Machine Learning based Compilation March, 2014

4

Predictive Modelling

Predictive
Modelling

MODEL

Training data features

Execution
time
or other
metric

Test features

Predicted time

• Predictive modelling techniques all have the property that they try to learn a
model that describes the correlation between inputs and outputs

• This can be a classification or a function or Bayesian probability distribution

• Distinct training and test data. Compiler writers don’t make this distinction!

M. O’Boyle Machine Learning based Compilation March, 2014

5

Training data

• Crucial to this working is correct selection of training data.

• The data has to be rich enough to cover the space of programs likely to be be
encountered.

• If we wish to learn over different processors so that the system can port then
we also need sufficient coverage here too

• In practice it is very difficult to formally state the space of possibly interesting
programs

• Ideas include typical kernels and compositions of them. Hierarchical benchmark
suites could help here

M. O’Boyle Machine Learning based Compilation March, 2014

6

Feature selection of programs

• The real crux problem with machine learning is feature selection What features
of a program are likely to predict it’s eventual behaviour?

• In a sense, features should be a compact representation of a program that
capture the essential performance related aspects and ignore the irrelevant

• Clearly, the number of vowels in the program is unlikely to be significant nor
the user comments

• Compiler IRs are a good starting point as they are condensed reps.

• Loop nest depth, control-flow graph structure, recursion, pointer based
accesses, data structure

M. O’Boyle Machine Learning based Compilation March, 2014

7

Case studies

Predictive
Modelling

MODEL

Execution
time
or other
metric

Test features
Program Features

assumed proc

Transformation
Description

Predicted
Optimal
Transformation

Original Test

• All of the techniques have the above characterisation

• In fact it is often easier to select a good transformation rather than determine
execution time. Relative vs absolute reasoning

M. O’Boyle Machine Learning based Compilation March, 2014

8

Compiler Optimization-Space Exploration” paper by Triantafyllis et al.
(CGO 2003)

• Find configurations that give good avg. performance across all programs.

• Group programs according to their performance on these configurations.

• Gradually find more specialized configurations by only considering subsets of
programs.

• Idea: Pruning the search space by only considering optimisations that worked
well on “similar” programs.

• Ose search tree embeds prior knowledge. Expect you to read, understand and
know this paper.

M. O’Boyle Machine Learning based Compilation March, 2014

9

Building the OSE search tree

• Arrange the best optimisation configurations C in a tree.

• Algorithm

Step 1: Initially, the set of programs Q = P

Step 2: Find configurations c0, c1 ∈ C that give the best performance across Q

Step 3: Create Q0, Q1 ⊆ Q such that ∀p ∈ Qi : perf(p, ci) ≥ perf(p, c1−i)
In other words: assign each benchmark to one of two sets depending on
which configuration gives the best performance.

Step 4: Start again at step 2 with Q = Qi, if Qi is not empty. Remove co, c1

• Max recursion depth: 3. Note remove best avg so far

• Paper has 3 nodes per level co, c1, c2. We restrict to 2.

M. O’Boyle Machine Learning based Compilation March, 2014

10

Constructing the Tree - An Example

M. O’Boyle Machine Learning based Compilation March, 2014

11

Constructing the Tree

c1 c2 c3 c4 c5 c6 c7 c8
P1 2 5 0.9 0.1 4 1.4 3 0.25
P2 1.1 0.1 3.8 5 1.1 2 0.5 3
P3 4 0.1 1.1 0.1 2 1.4 1 0.25
P4 0.9 0.1 1.8 0.1 1.1 3 0.4 4
P5 2 0.1 0.9 5 2 1.4 4 0.25
P6 1.1 0.1 3.8 0.1 1.1 3 0.5 1
P7 4 0.1 1.1 0.1 2 1.4 3 0.25
P8 0.9 5 1.8 0.1 1.1 4 0.4 3

Avg 2.0 1.32 1.9 1.32 1.8 1.7 1.6 1.5

Configurations c1 and c3 give best avg speedup

Use them at start of tree.

M. O’Boyle Machine Learning based Compilation March, 2014

12

Constructing the Tree - An Example

c1 c3

c6 c8c5 c7

P1 P3 P5 P7

P6 P8 P1 P3 P2 P4

P2 P4 P6 P8

P5 P7

c1 and c3 are best on average.

For programs P1,3,5 and 7: configurations c5 and c7 give next best avg
performance

For programs P2,4,6 and 8 : configurations c6 and c8 give next best avg
performance

M. O’Boyle Machine Learning based Compilation March, 2014

13

Optimizing a New Program
To quickly find a good configuration for a new program:

• Start at the root node and compare the performance of the program with the
two configurations found in its child nodes.

• Move to the node with the configuration that gives a better speedup.

• Repeat these steps until you’ve reached a leaf node.

• Pick the configuration on the path from the root to the leaf node that gave
the best performance.

M. O’Boyle Machine Learning based Compilation March, 2014

14

Traversing the Tree
Apply to same programs for illustration

c1 c3

c6 c8c5 c7

P1 P3 P5 P7

P6 P8 P1 P3 P2 P4

P2 P4 P6 P8

P5 P7

Underline denotes best

M. O’Boyle Machine Learning based Compilation March, 2014

15

Results on applying search tree
Prog Configs Performance

P1 c1,c5 4
P2 c3, c8 3.8
P3 c1, c5 4
P4 c3 c8 4
P5 c1 c7 4
P6 c3 c6 3.8
P7 c1 c7 4
P8 c3 c6 4

If we apply the tree to the same programs get an improvement.

Should not evaluate on training data though!

OSE uses performance models to speed up search

M. O’Boyle Machine Learning based Compilation March, 2014

16

Learning to schedule Moss, ..,Cavazos et al

Given partial schedule 2, which instruction to schedule next 1 or 4?

2

3 4

1 scheduledavailable

availablenot
available

• One of the first papers to investigate machine learning for compiler optimisation

• Appeared at NIPS ’97 - not picked up by compiler community till later.

M. O’Boyle Machine Learning based Compilation March, 2014

17

Learning to schedule

• The approach taken is to look at many (small to medium) basic blocks and to
exhaustively determine all possible schedules.

• Next go through each block and given a (potentially empty) partial schedule
and the choice of two or more instructions that may be scheduled next, select
each in turn and determine which is best.

• If there is a difference, record the input tuple (P, Ii, Ij) where P is a partial
schedule, Ii is the instruction that should be scheduled earlier than Ij. Record
TRUE as the output. Record FALSE with (P, Ij, Ii)

• For each variable size tuple record a fixed length vector summary based on
features.

M. O’Boyle Machine Learning based Compilation March, 2014

18

Learning to schedule

Feature selection can be a black art. Here dual issue of alpha biases choice.

• Odd Partial (odd): odd or even length schedule

• Instruction Class (ic): which class corresponds to function unit

• weighted critical path (wcp): length of dependent instructions

• Actual Dual (d): can this instruction dual issue with previous

• maxdelay (e): earliest cycle this instruction can go

M. O’Boyle Machine Learning based Compilation March, 2014

19

Feature extraction

2

3 4

1 scheduledavailable

availablenot
available

Tuple ({2}, 1, 4) : [odd:T, ic:0, wcp:1, d:T, e:0]: TRUE,

Tuple ({2}, 4, 1) : [odd:T, ic:0, wcp:0, d:T, e:0]: FALSE

• Given these tuples apply different learning techniques on data to derive a model

• Use model to select scheduling for test problems. One of the easiest is table
lookup/nearest neighbour

• Others used include neural net with hidden layer, induction rule and decision
tree

M. O’Boyle Machine Learning based Compilation March, 2014

20

Example - table lookup

2,1,4

2,4,1 T, 0, 0, T, 0

T, 0, 1 ,T ,0

odd ic wcp d e T F

15 8

3 7

Schedule choice

• The first schedule is selected as previous training has shown that it is better

• If feature vector not stored, then find nearest example. Very similar to
instance-based learning

M. O’Boyle Machine Learning based Compilation March, 2014

21

Induction heuristics

e = second

e = same ∧ wcp = first

e = same ∧ wcp = same ∧ d = first ∧ ico = load

e = same ∧ wcp = same ∧ d = first ∧ ico = store

e = same ∧ wcp = same ∧ d = first ∧ ico = ilogical

e = same ∧ wcp = same ∧ d = first ∧ ico = fpop

e = same ∧ wcp = same ∧ d = first ∧ ico = iarith ∧ ic1 = load ...

• Schedule the first Ii if the max time of the second is greater

• If the same, schedule the one with the greatest number of critical dependent
instruction ...

M. O’Boyle Machine Learning based Compilation March, 2014

22

Results

• Basically all techniques were very good compared to the native scheduler
Approximately 98% of the performance of the hand-tuned heuristic

• Small basic blocks were good training data for larger blocks. Relied on
exhaustive search for training data - not realistic for other domains

• Technique relied on features that were machine specific so questionable
portability though induction heuristic is pretty generic

• There is little head room in basic bock scheduler so hard to see benefit over
standard schemes. Picked a hard problem to show improvement

• It seems leaning relative merit i vs j is easier than absolute time

M. O’Boyle Machine Learning based Compilation March, 2014

23

Learning to unroll Monsifort

• Monsifort uses machine learning to determine whether or not it is worthwhile
unrolling a loop

• Rather than building a model to determine the performance benefit of loop
unrolling, try to classify whether or not loop unrolling s worthwhile

• For each training loop, loop unrolling was performed and speedup recorded.
This output was translated into good bad,or no change

• The loop features were then stored alongside the output ready for learning

M. O’Boyle Machine Learning based Compilation March, 2014

24

Learning to unroll Monsifort

• Features used were based on inner loop characteristics.

• The model induced is a partitioning of the feature space. The space was
partitioned into those sections where unrolling is good, bad or unchanged.

• This division was hyperplanes in the feature space that can easily be represented
by a decision tree.

• This learnt model is the easily used at compile time. Extract the features of
the loop and see which section they belong too

• Although easy to construct requires regions in space to be convex. Not true
for combined transformations.

M. O’Boyle Machine Learning based Compilation March, 2014

25

Learning to unroll Monsifort

3 x −2y > 6

y n

−x+2y>8 6x+y>60

y n y n

A B A B

A

A

B

B

. .
..

.
.

.
.

.

.
.

y

x

Feature space is partitioned into regions that can be represented by decision tree.

Each constraint is linear in the features forming hyperplanes in the 6 dimensional
space.

M. O’Boyle Machine Learning based Compilation March, 2014

26

Learning to unroll Monsifort

do i = 2, 100

enddo

 a(i) = a(i) + a(i−1) + a(i+1)

statements 1
aritmetic op 2
iterations 99
array access 4
resuses 3
ifs 0

• Features try to capture structure that may affect unrolling decisions

• Again allows programs to be mapped to fixed feature vector

• Feature selection can be guided by metrics used in existing hand-written
heuristics

M. O’Boyle Machine Learning based Compilation March, 2014

27

Results

• Classified examples correctly 85% of time. Better at picking negative cases
due to bias in training set

• Gave an average 4% and 6% reduction in execution time on Ultrasparc and
IA64 compared to 1% and 3% from g77.Better than original heuristic.

• However g77 is an easy compiler to improve upon. Although small unrolling
only beneficial on 17/22% of benchmarks

• Boosting helped classification generate a set of classifiers and select based on
a weighted average of their classification

• Basic approach - unroll factor not considered.

M. O’Boyle Machine Learning based Compilation March, 2014

28

Not a universal panacea

• Machine learning has revolutionised compiler optimisation and is becoming
mainstream.

• However, it is not a panacea, solving all our problems.

• Fundamentally, it is an automatic curve fitter. We still have to choose the
parameters to fit and the space to optimise over

• Runtime undecidability will not go away.

• Now being used for heterogeneous multi-cores.

M. O’Boyle Machine Learning based Compilation March, 2014

