
Dynamic Compilation

Michael O’Boyle

March, 2014

M. O’Boyle Iterative Compilation March, 2014



1

Overview

• Dynamic Compilation

• Specialisation

– DyC
– Calpa

• Dynamic Binary translation

– Dynamo

M. O’Boyle Iterative Compilation March, 2014



2

Dynamic techniques

• These techniques focus on delaying some or all of the optimisations to runtime

• This has the benefit of knowing the exact runtime control-flow, hotspots, data
values, memory locations and hence complete program knowledge

• It thus largely eliminates many of the undecidable issues of compile-time
optimisation by delaying until runtime

• However, the cost of analysis/optimisation is now crucial as it forms a runtime
overhead. All techniques characterised by trying to exploit runtime knowledge
with minimal cost

M. O’Boyle Iterative Compilation March, 2014



3

Background

• Delaying compiler operations until runtime has been used for many years

• Interpreters translates and execute at runtime

• Languages developed in the 60s eg Algol 68 allowed dynamic memory allocation
relying on language specific runtime system to mange memory

• Lisp more fundamentally has runtime type checking of objects

• Smalltalk in the 80s deferred compilation to runtime to reduce the amount of
compilation otherwise required in the 00 setting

• Java uses dynamic class loading to allow easy upgrading of software

M. O’Boyle Iterative Compilation March, 2014



4

Runtime specialisation

• For many, runtime optimisation is “adaptive optimisation”

• Although wide range of techniques, all are based around runtime specialisation.
Constant propagation is a simple example.

• Specialisation is a technique that has been used in compiler technology for
many years especially in more theoretical work

• Specialising an interpreter with respect to a program gives a compiler

• Can we specialise at runtime to gain benefit with minimal overhead? Statically
inserted selection code vs parametrised code vs runtime generation.

M. O’Boyle Iterative Compilation March, 2014



5

Static code selection, parametrised and code generation

IF (N<M) THEN

DO I =1,N

DO J =1,M

...

ENDDO

ENDDO

ELSE

DO J =1,M

DO I =1,N

...

ENDDO

ENDDO

ENDIF

IF (N<M) THEN

U1 = N

U2 = M

ELSE

U1 = M

U2 = N

ENDIF

DO I1 =1,U1

DO I2= 1,U2

...

ENDDO

ENDDO

gen_nest1(fp,N,M)

(*fp)()

M. O’Boyle Iterative Compilation March, 2014



6

DyC

• One of the best known dynamic program specialisation techniques based on
dynamic code generation.

• The user annotates the program defining where there may be opportunities for
runtime specialisation. Marks variables and memory locations that are static

within a particular scope.

• The system generates code that checks the annotated values at runtime and
regenerates code on the fly.

• By using annotation, the system avoids over-checking and hence runtime
overhead. This is at the cost of additional user overhead.

M. O’Boyle Iterative Compilation March, 2014



7

DyC

• Focuses on static runtime values and memory locations. Static binding-time
analysis to identify static runtime expressions.

• Polyvariant division and specialisation to replicate control-flow path and divide
into static and run-time variable sub-graphs.

• A specialised compiler is inserted at dynamic sub-graphs. At runtime it
compiles code with values and stores this in a cache for later use and then
executes it.

• Later invocations look up the code and use it. Uses full unrolling, strength
reduction, zero/copy propagation, dead-assignment elimination and static
loads.

M. O’Boyle Iterative Compilation March, 2014



8

DyC

Binding analysis
examines all uses
of static variables
within scope

Dynamic compiler
exploits invariancy
and specialises the code
when invoked

Optimizations
Traditional

Binding Time
Analysis

Dynamic−Compiler
Generator

Statically
Generated

Code

Dynamic
Compiler

Dynamically
Generated
Code

Run Time

Static Compile
Time

Program

input

Annotated Program Source

M. O’Boyle Iterative Compilation March, 2014



9

DyC Example

make_static(CMTRIX,CROWS,CCOLS,CROW,CCOL); -- USER annotation

CROWSO2 = CROWS/2; CCOLSO2= CCOLS/2;

for(irow=0; irow<irows; ++irow){

rowbase = irow-CROWSO2;

for(icol= 0; icol<icols;++icol){

colbase = icol-CCOLSO2; sum =0.0;

for (CROW=0; CROW<CROWS; ++CROW){ -- unroll loop

for (CCOL=0; CCOL <CCOLS; +CCOL){ -- unroll loop

weight = cmatrix @[CROW]@[CCOL]; -- constant load

x = image[rowbase+CROW][colbase+CCOL];

weighted_x = x * weight;

sum = sum + weighted_x;

outbuf[irow][icol] = sum;

M. O’Boyle Iterative Compilation March, 2014



10

DyC Example

Matrix cmatrix has the following structure :

0 1 0
1 0 1
0 1 0

• When CROW and CCOL loop is unrolled, the static loads from cmatrix will be
inlined

• Allows elimination of redundant computation

M. O’Boyle Iterative Compilation March, 2014



11

DyC Example

-- crow and ccol unrolled

-- weight accesses static load, is propagated and eliminated

x = image[rowbase][colbase]; -- crow =0, ccol=0

weighted_x = x * 0.0; -- weight == cmatrix[0][0] ==0

sum = sum + weighted_x;

-- weight accesses static load, is propagated and eliminated

x = image[rowbase][colbase+1]; -- crow =0, ccol=1

weighted_x = x * 1.0; -- weight == cmatrix[0][0] ==1

sum = sum + weighted_x;

...

M. O’Boyle Iterative Compilation March, 2014



12

DyC Example

for(irow=0; irow<irows; ++irow){

rowbase = irow- 1;

for(icol= 0; icol<icols2;++icol){

colbase = icol-1;

x = image[rowbase][colbase+1];-- It 1:crow=0,ccol=1

sum = x;

x = image[rowbase+1][colbase];-- It 3:crow=1;ccol=0

sum = sum + x;

...

outbuf[irow][icol] = sum;

M. O’Boyle Iterative Compilation March, 2014



13

DyC Example

• Asymptotic speedup and a range programs varies from 1.05 to 4.6

• Strongly depends on percentage of time spent in the dynamically compiled
region. Varies from 9.9 to 100 %

• Low overhead from 13 cycles to 823 cycles per instruction generated

• Break-even point low .

• However relies on user intervention which may not be realistic in large
applications

• Relies on user correctly annotating the code

M. O’Boyle Iterative Compilation March, 2014



14

Calpa for DyC

• Calpa is a system aimed at automatically identifying opportunities for
specialisation without user intervention

• It analyses the program for potential opportunities and determines the possible
cost vs the potential benefit

• For example if a variable is multiplied by another variable which is known to
be constant in a particular scope, then if this is equal to 0 or 1 then cheaper
code maybe generated

• If this is inside a deep loop then a quick test for 0 or 1 outside the loop will
be profitable

M. O’Boyle Iterative Compilation March, 2014



15

Calpa for DyC

Calpa is a front
end to DyC

It uses
instrumentation
to guide
annotation
insertion compiled

C program

dynamic
compiler

C program

instrumented
C program

annotated
C program

DyC
compiler

Calpa
instrumenter

Calpa
Annotation

value
profile

sample

input

M. O’Boyle Iterative Compilation March, 2014



16

Calpa for DyC

i=0

L1: if i >= size goto L2

uelem = u[i]

velem = v[i]

t = uelem * velem

sum = sum + t

i = i + 1

goto L1

L2:

∅

i, size

i, u[]
i, v[]
i, u[], v[]
i, sum, u[], v[]
i

∅

• At each statement calculate candidate static variables .

• Over larger region determine candidate division - all possible sub sets. Search
for the best set based on value profile data using gradient search.

M. O’Boyle Iterative Compilation March, 2014



17

Calpa for DyC

• Instruments code and sees have often variables change value. Given this data
determined the cost and benefit for a region of code

• Number of different variants, cost of generating code, cache lookup. Main
benefit determined by estimating new critical path

• Explores all specialisation up to a threshold. Widely different overheads 2
seconds to 8 hours. Finds user choices and in two cases improves - from 6.6
to 22.6

• Calpa and DyC utilise selective dynamic code generation. Next look at fully
dynamic schemes.

M. O’Boyle Iterative Compilation March, 2014



18

Dynamic Binary Translation

• The key idea is to take one ISA binary and translate it into another ISA binary
at runtime.

• In fact this happens inside Intel processors where x86 is unpacked and translated
into an internal RISC opcode which is then scheduled. The TransMeta Crusoe
processor does the same. Same with IBM legacy ISAs.

• Why don’t we do this statically? Many reasons!

• The source ISA is legacy but the processor internal ISA changes. It is
impossible to determine statically what is the program. It is not legal to store
a translation. It can be applied to a local ISA for long term optimisation

M. O’Boyle Iterative Compilation March, 2014



19

DYNAMO

• Focuses on binary to binary optimisations on the same ISA. One of the claims
is that it allows compilation with -01 but overtime provides -03 performance.

• Catches dynamic cross module optimisation opportunities missed by a static
compiler. Code layout optimisation allowing improved scheduling due to bigger
segments. Branch alignment and partial procedural inlining form part of the
optimisations

• Aimed as way of improving performance from a shipped binary overtime.

• Has to use existing hardware - no additional fragment cache available

M. O’Boyle Iterative Compilation March, 2014



20

DYNAMO

• Initially interprets code. This is very fast as the code is native. When a branch
is encountered check if already translated

• If it has been translated jump and context switch to the fragment cache code
and execute. Otherwise if hot translate and put in cache.

• Over time the working set forms in the cache and Dynamo overhead reduces
-less than 1.5% on specint.

• Cheap profiling, predictability and few counters are necessary.

• Linear code structure in cache makes optimisation cheap. Standard redundancy
elimination applied.

M. O’Boyle Iterative Compilation March, 2014



21

DYNAMO

lookup branch
target in cache

jump to top of
fragment in
cache

increment counter
associated with
branch target addr

start of trace
condition?

counter value
exceeds hot
threshold?

interpret until
taken branch

emit into cache, link with
other fragments & recycle
the associated counter

create new
fragment and
optimize it

end of trace
condition?

interpret + codegen
until taken branch

hit yes

no

no

yes

no

yes

Fragment Cache

context
switch

instruction

M. O’Boyle Iterative Compilation March, 2014



22

DYNAMO

lookup branch
target in cache

jump to top of
fragment in
cache

increment counter
associated with

start of trace
condition?

counter value
exceeds hot
threshold?

interpret until
taken branch

emit into cache, link with
other fragments & recycle
the associated counter

create new
fragment and
optimize it

end of trace
condition?

interpret + codegen
until taken branch

hit yes

no

no

yes

no

yes

Fragment Cache

context
switch

instruction

branch target addr

1.5% overhead

M. O’Boyle Iterative Compilation March, 2014



23

DYNAMO

Control-flow
in binary

Cross-module
flow not
picked up
by compiler

 A

 B C

D

E

G

H I

J

call

return

M. O’Boyle Iterative Compilation March, 2014



24

DYNAMO

Layout of
code
in memory

The two
functions
may be very
far apart in
memory

A

B

C

D

E

G

H

I

J

M. O’Boyle Iterative Compilation March, 2014



25

DYNAMO

Layout of
trace in
Dynamo’s
fragment
cache

A

C

D

G

H

J

E

B

I

to B

to

fragment
body

exit
stubs

trap to
Dynamo

M. O’Boyle Iterative Compilation March, 2014



26

DYNAMO

When there is
a change of
control-flow
it is important
to avoid
returning to
interpreter
if at all
possible

 A

 B C

D

E

G

H I

J

call

return

M. O’Boyle Iterative Compilation March, 2014



27

DYNAMO

Achieved by
fragment linking

Also provides an
opportunity for
eliminating
redundant
compensation code

Essential optimisation
factor 40!

A

C

D

G

H

J

E

B

I

to B

to

B

D

G

J

I

E

to

to H

A

M. O’Boyle Iterative Compilation March, 2014



28

DYNAMO percentage improvement

trace selection optimisation
compress 7 7

go -2 0
ijpeg -2 0

li 16 6
mk88 18 5
perl 12 16

vortex -1 0
def 2 2
avg 6 3

• Flush cache at phase change. Bail out if no steady control-flow. Optimising
at a very low level. Complementary to DyC

M. O’Boyle Iterative Compilation March, 2014



29

Summary and conclusions

• All schemes allow specialisation at runtime to program and data

• Staged schemes such as DyC are more powerful as they only incur runtime
overhead for specialisation regions

• JIT and DBT delay everything to runtime leaving little optimisation
opportunities

• DyC focused on reducing ops - no investigation of processor behaviour

• Dynamo trace approach basis for JIT compilers

M. O’Boyle Iterative Compilation March, 2014


