
Adaptive and Profile Directed Compilation

Michael O’Boyle

March, 2014

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



1

Overview

• Why we fail to fully optimise

• How to overcome this

• Profile Directed Compilation

• Iterative Compilation

• Critical evaluation and conclusion

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



2

Why fail

• Fundamental reason for failure is complexity and undecidability

• At compile time we do not know the data to be read in, so impossible to know
the best code sequence

• The processor architecture behaviour is so complex that it is almost impossible
to determine what the best code sequence should be even if we knew the data
to be processed.

• Although individual components are simple, together impossible to derive
realistic model

• O-O execution and cache have non-deterministic behaviour!

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



3

Profile directed compilation

• Direct addresses problem of compile time unknown data

• Key(simple) idea: run program once and collect some useful information

• Use this runtime information to better improve program performance

• In effect move the first runtime into the compile time phase

• Makes sense if gathering the profile data is cheap and user willing to pay for 2
compiles. Can still use after first compile.

• Allows specialisation to runtime data - pros and cons?

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



4

PDC schematic

Compiler executableprogram

data

results

0

Compiler executable

data

profile

results0 1

1

Profile information is an additional output.

Data can change from run to run. Executable still correct.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



5

PDC for classic optimisation

• Record frequently taken edges of program control-flow graph

• IMPACT compiler in 1990s good example of this but also used earlier - Josh
Fisher et al, Multiflow.

• Use weight information of edges and paths in graph to restructure control-flow
graph to enable greater optimisation

• Main idea: merge frequently executed basic blocks increasing sizes of basic
block if possible (superblock/hyperblock) formation. Fix up rest of code.

• Allows improved scheduling of instructions and more aggressive scalar
optimisations at expense of code size.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



6

PDC Example 1

Sequence of basic blocks
Frequency of execution on edges and
nodes
Primarily ABEF
Other entry/exit control-flow
prevents merging
Super-block - frequently executed path
Merge and tidy-up
Optimise larger unit

D E

F

C

A
100

10
B
90

90

100

0

10

10

0

0

90

90

90

199

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



7

PDC Example 2

Selecting the trace

Start at most frequent block
Add blocks on most frequent successors
Repeat on other nodes
Done in both control-flow directions
Do on remaining nodes

D E

F

C

A
100

10
B
90

900

10

10

0

0

90

90

90

199

F
100

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



8

PDC Example 3

Tail Duplication

Duplicate first block with
external entry edges
But not the head
Redirect incoming edges
Duplicate outgoing
Repeat
Much code duplication

E

F

A
100

B
90

90

10

90

90

90

1

C
10

F

D
0

90

90
10

10

0

0

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



9

Beyond Path profiling

• Although useful, the performance gains are modest

• Challenge of undecidability and processor behaviour not addressed.

• What happens if data changes on the second run??

• Really focuses on persistent control-flow behaviour

• All other information eg runtime values, memory locations accessed ignored

• Can we get more out of knowing data and its impact on program behaviour?

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



10

Evolution of PDC

PDC one compile

Compiler executableprogram

data

results

0

Compiler executable

data

profile

results0 1

1

Iterative: multiple compiles

Compiler executableprogram

data

results

0

profile

0

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



11

Iterative Compilation : OCEANS

Iterative
structure.

Novel notion of
two communication
compiler infrastructures

Main work on
searching for best
tile and unroll
parameters
PFDC ’98

Source code

High level restruct

Assembly code

SALTO

executable

PILO

LORA

cost model

information
profile

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



12

UltraSparc: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 3 and Tile size = 57.

Near minimum: 2.6%. Original 4.99 secs, Minimum 0.56 secs

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



13

UltraSparc N = 400

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 0.0%. Initially 2.65 times slower than minimum

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



14

Alpha: space within 20% of minimum N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

U
nr

ol
l

Tile Size

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 0.9%. Original 31.72, Minimum 3.34, Max 81.40 !

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



15

Alpha N = 512

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 21.9%.Originally 5.25 times slower than minimum

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



16

R10000: N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 7.2%. Original 2.79, Minimum 1.09

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



17

R10000 N = 512

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 4.9%.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



18

Pentium Pro: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 19 and Tile size = 57.

Near minimum: 4.3%. Original 4.88 Minimum 1.43

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



19

Pentium Pro N = 400

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

W
ith

in
 %

 o
f m

in
im

iu
m

Number of Evaluations

50 steps: within 10.5%.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



20

Phase Order

• Oceans work looked at parametrised high level search spaces (tiling, unrolling).
Restricted by compilers and only small kernel exploration

• Impressive search results due to “tuned” heuristic and small spaces. In practise
depends on space shape

• Keith Cooper et al ’99 onwards also looked at iterative compilation

• Cooper’s search space was the orderings of phases within a compiler

• Lower level and not tied to any language. More generic and explores the
age-old phase ordering problem more directly

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



21

Phase Order

Steering

Front end Back End

Objective
Function

code

Cooper has found improvements up to 25% over default sequences.

Examined search heuristics that find good points quickly.

However, evaluation approach is strange and results don’t seem portable.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



22

Search Speed

• The main problem is optimisation space size and speed to solution

• Many use a cut down transformation space - but this just imposes ad hoc non
portable bias

• Need to have a large interesting transformation space. Orthogonal - no
repetition.

• Build search techniques to find good points quickly

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



23

Using models

• Obvious approach is to use cheap static modes to help reduce number of runs

• Difficulty is to balance savings gained by model against hardwiring strategy

• Wolfe and Mayadan generate many versions of a program and check against
an internal cache models rather than generate the best by construction

• Although more successful doesn’t address problem of processor complexity.No
real feedback (Pugh A* search ). Cannot adapt

• Knijnenburg et al PACT 2000 use simple cache models as filters. Used to
eliminate bad options rather than as a substitute for feedback. Significant
speed up

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



24

Search space

• Understanding the shape or structure of search space is vital to determining
good ways to search it

• Unfortunately little agreement. FDO showed large number of minima with
structure. Vuduc ’99 shows that minima dramatically vary across processor

• Cooper shows that reasonable minima are very near any given point.

• Vuduc uses distribution of good points as a stopping criteria. Fursin use upper
bound of performance as a guide.

• Using Prior Knowledge in Search space: last lecture on ML

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



25

Critical evaluation of iterative compilation

• All techniques move runtime either into compile or design time. Application
tuning is not portable across programs.

• Iterative compilation allows great adaption to and specialisation to a processor
than PDC.

• However, over specialises to a data set. Makes sense when the behaviour of
a program is relatively data independent in the case of linear algebra or DSP
programs.

• Excessive design/compile time means only currently suitable for embedded
apps or libraries.

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



26

Summary

• Introduced profile directed compilation, program tuning and iterative
compilation

• All used runtime behaviour at compile/design time to select better
transformations

• Trade-off in number of runs vs eventual performance

• Iterative techniques very good at porting and specialising to new platforms

• However, all rely on eventual on-line runtime data to be same as that visited
off-line. Poor at adapting to new data

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014


