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Overview

• Why we fail to fully optimise

• How to overcome this

• Profile Directed Compilation

• Iterative Compilation

• Critical evaluation and conclusion
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Why fail

• Fundamental reason for failure is complexity and undecidability

• At compile time we do not know the data to be read in, so impossible to know
the best code sequence

• The processor architecture behaviour is so complex that it is almost impossible
to determine what the best code sequence should be even if we knew the data
to be processed.

• Although individual components are simple, together impossible to derive
realistic model

• O-O execution and cache have non-deterministic behaviour!
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Profile directed compilation

• Direct addresses problem of compile time unknown data

• Key(simple) idea: run program once and collect some useful information

• Use this runtime information to better improve program performance

• In effect move the first runtime into the compile time phase

• Makes sense if gathering the profile data is cheap and user willing to pay for 2
compiles. Can still use after first compile.

• Allows specialisation to runtime data - pros and cons?
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PDC schematic
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Profile information is an additional output.

Data can change from run to run. Executable still correct.
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PDC for classic optimisation

• Record frequently taken edges of program control-flow graph

• IMPACT compiler in 1990s good example of this but also used earlier - Josh
Fisher et al, Multiflow.

• Use weight information of edges and paths in graph to restructure control-flow
graph to enable greater optimisation

• Main idea: merge frequently executed basic blocks increasing sizes of basic
block if possible (superblock/hyperblock) formation. Fix up rest of code.

• Allows improved scheduling of instructions and more aggressive scalar
optimisations at expense of code size.
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PDC Example 1

Sequence of basic blocks
Frequency of execution on edges and
nodes
Primarily ABEF
Other entry/exit control-flow
prevents merging
Super-block - frequently executed path
Merge and tidy-up
Optimise larger unit
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PDC Example 2

Selecting the trace

Start at most frequent block
Add blocks on most frequent successors
Repeat on other nodes
Done in both control-flow directions
Do on remaining nodes
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PDC Example 3

Tail Duplication

Duplicate first block with
external entry edges
But not the head
Redirect incoming edges
Duplicate outgoing
Repeat
Much code duplication
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Beyond Path profiling

• Although useful, the performance gains are modest

• Challenge of undecidability and processor behaviour not addressed.

• What happens if data changes on the second run??

• Really focuses on persistent control-flow behaviour

• All other information eg runtime values, memory locations accessed ignored

• Can we get more out of knowing data and its impact on program behaviour?
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Evolution of PDC

PDC one compile
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Iterative Compilation : OCEANS

Iterative
structure.

Novel notion of
two communication
compiler infrastructures

Main work on
searching for best
tile and unroll
parameters
PFDC ’98

Source code
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UltraSparc: space within 20% of minimum N = 400
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Minimum at: Unroll = 3 and Tile size = 57.

Near minimum: 2.6%. Original 4.99 secs, Minimum 0.56 secs
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UltraSparc N = 400
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50 steps: within 0.0%. Initially 2.65 times slower than minimum
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Alpha: space within 20% of minimum N = 512
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Near minimum: 0.9%. Original 31.72, Minimum 3.34, Max 81.40 !
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Alpha N = 512
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50 steps: within 21.9%.Originally 5.25 times slower than minimum
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R10000: N = 512

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 4 and Tile size = 85.

Near minimum: 7.2%. Original 2.79, Minimum 1.09
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R10000 N = 512

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Number of Evaluations

W
ith

in
 %

 o
f m

in
im

iu
m

50 steps: within 4.9%.
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Pentium Pro: space within 20% of minimum N = 400

10 20 30 40 50 60 70 80 90

2

4

6

8

10

12

14

16

18

Tile Size

U
nr

ol
l

Minimum at: Unroll = 19 and Tile size = 57.

Near minimum: 4.3%. Original 4.88 Minimum 1.43

M. O’Boyle Adaptive and Profile Directed Compilation March, 2014



19

Pentium Pro N = 400
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Phase Order

• Oceans work looked at parametrised high level search spaces (tiling, unrolling).
Restricted by compilers and only small kernel exploration

• Impressive search results due to “tuned” heuristic and small spaces. In practise
depends on space shape

• Keith Cooper et al ’99 onwards also looked at iterative compilation

• Cooper’s search space was the orderings of phases within a compiler

• Lower level and not tied to any language. More generic and explores the
age-old phase ordering problem more directly
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Phase Order

Steering

Front end Back End

Objective
Function

code

Cooper has found improvements up to 25% over default sequences.

Examined search heuristics that find good points quickly.

However, evaluation approach is strange and results don’t seem portable.
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Search Speed

• The main problem is optimisation space size and speed to solution

• Many use a cut down transformation space - but this just imposes ad hoc non
portable bias

• Need to have a large interesting transformation space. Orthogonal - no
repetition.

• Build search techniques to find good points quickly
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Using models

• Obvious approach is to use cheap static modes to help reduce number of runs

• Difficulty is to balance savings gained by model against hardwiring strategy

• Wolfe and Mayadan generate many versions of a program and check against
an internal cache models rather than generate the best by construction

• Although more successful doesn’t address problem of processor complexity.No
real feedback (Pugh A* search ). Cannot adapt

• Knijnenburg et al PACT 2000 use simple cache models as filters. Used to
eliminate bad options rather than as a substitute for feedback. Significant
speed up
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Search space

• Understanding the shape or structure of search space is vital to determining
good ways to search it

• Unfortunately little agreement. FDO showed large number of minima with
structure. Vuduc ’99 shows that minima dramatically vary across processor

• Cooper shows that reasonable minima are very near any given point.

• Vuduc uses distribution of good points as a stopping criteria. Fursin use upper
bound of performance as a guide.

• Using Prior Knowledge in Search space: last lecture on ML
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Critical evaluation of iterative compilation

• All techniques move runtime either into compile or design time. Application
tuning is not portable across programs.

• Iterative compilation allows great adaption to and specialisation to a processor
than PDC.

• However, over specialises to a data set. Makes sense when the behaviour of
a program is relatively data independent in the case of linear algebra or DSP
programs.

• Excessive design/compile time means only currently suitable for embedded
apps or libraries.
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Summary

• Introduced profile directed compilation, program tuning and iterative
compilation

• All used runtime behaviour at compile/design time to select better
transformations

• Trade-off in number of runs vs eventual performance

• Iterative techniques very good at porting and specialising to new platforms

• However, all rely on eventual on-line runtime data to be same as that visited
off-line. Poor at adapting to new data
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