Adaptive and Profile Directed Compilation

Michael O'Boyle

March, 2014
® School of
informatics

M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

o School of _ e
- informatics

Overview

e Why we fail to fully optimise
e How to overcome this

e Profile Directed Compilation
e [terative Compilation

e Critical evaluation and conclusion

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
s iInformatics

Why fail
e Fundamental reason for failure is complexity and undecidability

e At compile time we do not know the data to be read in, so impossible to know
the best code sequence

e The processor architecture behaviour is so complex that it is almost impossible
to determine what the best code sequence should be even if we knew the data
to be processed.

e Although individual components are simple, together impossible to derive
realistic model

e O-0O execution and cache have non-deterministic behaviour!

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

® School of _ o
= informatics

Profile directed compilation

e Direct addresses problem of compile time unknown data

e Key(simple) idea: run program once and collect some useful information
e Use this runtime information to better improve program performance

e In effect move the first runtime into the compile time phase

e Makes sense if gathering the profile data is cheap and user willing to pay for 2
compiles. Can still use after first compile.

e Allows specialisation to runtime data - pros and cons?

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= iInformatics

PDC schematic

!

data0
utabl % Compiler executabl

resultsO

A

% Compiler

1

!
!

Profile information is an additional output.

Data can change from run to run. Executable still correct.

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

® School of _ o
= informatics

PDC for classic optimisation
e Record frequently taken edges of program control-flow graph

e IMPACT compiler in 1990s good example of this but also used earlier - Josh
Fisher et al, Multiflow.

e Use weight information of edges and paths in graph to restructure control-flow
graph to enable greater optimisation

e Main idea: merge frequently executed basic blocks increasing sizes of basic
block if possible (superblock/hyperblock) formation. Fix up rest of code.

e Allows improved scheduling of instructions and more aggressive scalar
optimisations at expense of code size.

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

PDC Example 1

School of _ e

o
= informatics

Sequence of basic blocks foo 10
Frequency of execution on edges and 90
nodes
Primarily ABEF 0 o T
Other entry/exit control-flow ”
prevents merging
Super-block - frequently executed path ([)) 50
Merge and tidy-up o 10
Optimise larger unit 0

F

100

99
M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

School of _ e

PDC Example 2

o
= informatics

A 10
100
Selecting the trace 90
B C
Start at most frequent block % 10
Add blocks on most frequent successors
ely
Repeat on other nodes
) o D E
Done in both control-flow directions 0 %
Do on remaining nodes 10
0 90
F
100
F
99 1
M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

® School of _ e
= informatics
PDC Example 3
v
Tail Duplication Too 0
90
Duplicate first block with 5 0 c
external entry edges 90 10
But not the head 90
Redirect incoming edges E D "
Duplicate outgoing 0
Repeat 0 0
Much code duplication F
90 F L]
10
90 N
M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

® School of _ o
s informatics

Beyond Path profiling

e Although useful, the performance gains are modest

e Challenge of undecidability and processor behaviour not addressed.

e What happens if data changes on the second run??

e Really focuses on persistent control-flow behaviour

e All other information eg runtime values, memory locations accessed ignored

e Can we get more out of knowing data and its impact on program behaviour?

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
—= informatics

Evolution of PDC

!

g~ ot | ot e vt | et

PDC one compile S i
Compiler (" executabl %
resultsO

lterative: multiple compiles

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Iterative Compilation : OCEANS
lterative
structure.

Novel notion of High level restruct M

two communication
compiler infrastructures

profile
information

i | PILO
Main work on [sato /{j

searching for best
tile and unroll

parameters
PFDC '98

executable

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

® School of _ e
- informatics
UltraSparc: space within 20% of minimum N = 400

18

16

14

12

Unroll
=
o

IN
T

RLURERN

Tile Size

Minimum at: Unroll = 3 and Tile size = 57.

Near minimum: 2.6%. Original 4.99 secs, Minimum 0.56 secs
M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

o School of _ e
- informatics

UltraSparc N = 400

160 §

140 i

=
N
(=}

1

100 T

Within % of minimium
[ee)
o
T
1

(2]
o
T

1

401 .

20 B

0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200

Number of Evaluations

50 steps: within 0.0%. Initially 2.65 times slower than minimum

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Alpha: space within 20% of minimum N = 512

18
16
14

12

o
c 10
)
8
6

| ot e g

2+

| | | | |
10 20 30 40 50 60 70 80 90
Tile Size

Minimum at: Unroll = 4 and Tile size = 85.
Near minimum: 0.9%. Original 31.72, Minimum 3.34, Max 81.40 !

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

50 steps: within 21.9%.0Originally 5.25 times slower than minimum

Within % of minimium

450

400

350

300

N

a

o
T

200

150

100

50

:

Alpha N = 512

20 40 60 80 100 120 140 160
Number of Evaluations

180

200

15

inf

School of _ e
ormatics

M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

o School of
= inf

ormatics
R10000: NV =512

IN

IRIREHIITNR

!
10

|
20 30 40 50

Tile Size

Minimum at: Unroll = 4 and Tile size = 85

60

|
70 80 90

Near minimum: 7.2%. Original 2.79, Minimum 1.09
M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

200

180

160

140

=
N
o

Within % of minimium

60

40

20

50 steps: within 4.9%.

R10000 N = 512

100

80

L

| | | | | | | |
20 40 60 80 100 120 140 160 180
Number of Evaluations

200

17

inf

School of _ e
ormatics

M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

o School of _ e
- informatics

Pentium Pro: space within 20% of minimum N = 400

AN R
o

! 0

12

_ <><>O<>

S
c 10
]

| a
1 | é

18+

o

| | | | | | | | |
10 20 30 40 50 60 70 80 90
Tile Size

Minimum at: Unroll = 19 and Tile size = 57.
Near minimum: 4.3%. Original 4.88 Minimum 1.43

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

Pentium Pro N = 400

300

250

200

150

Within % of minimium

100

50

T

50 steps: within 10.5%.

| | | | | | | |
20 40 60 80 100 120 140 160
Number of Evaluations

!
180

200

19

inf

School of _ e
ormatics

M. O’'Boyle

Adaptive and Profile Directed Compilation

March, 2014

o School of _ e
= informatics

Phase Order

e Oceans work looked at parametrised high level search spaces (tiling, unrolling).
Restricted by compilers and only small kernel exploration

e Impressive search results due to “tuned” heuristic and small spaces. In practise
depends on space shape

e Keith Cooper et al '99 onwards also looked at iterative compilation
e Cooper’s search space was the orderings of phases within a compiler

e Lower level and not tied to any language. More generic and explores the
age-old phase ordering problem more directly

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Phase Order
Frontend Back End

N \ ; / > code
@ Objective
Function

Cooper has found improvements up to 25% over default sequences.

Examined search heuristics that find good points quickly.

However, evaluation approach is strange and results don't seem portable.

M. O’'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Search Speed

e The main problem is optimisation space size and speed to solution

e Many use a cut down transformation space - but this just imposes ad hoc non
portable bias

e Need to have a large interesting transformation space. Orthogonal - no
repetition.

e Build search techniques to find good points quickly

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
== informatics

Using models
e Obvious approach is to use cheap static modes to help reduce number of runs
e Difficulty is to balance savings gained by model against hardwiring strategy

e Wolfe and Mayadan generate many versions of a program and check against
an internal cache models rather than generate the best by construction

e Although more successful doesn’t address problem of processor complexity.No
real feedback (Pugh A* search). Cannot adapt

e Knijnenburg et al PACT 2000 use simple cache models as filters. Used to
eliminate bad options rather than as a substitute for feedback. Significant
speed up

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Search space

e Understanding the shape or structure of search space is vital to determining
good ways to search it

e Unfortunately little agreement. FDO showed large number of minima with
structure. Vuduc '99 shows that minima dramatically vary across processor

e Cooper shows that reasonable minima are very near any given point.

e Vuduc uses distribution of good points as a stopping criteria. Fursin use upper
bound of performance as a guide.

e Using Prior Knowledge in Search space: last lecture on ML

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
== informatics

Critical evaluation of iterative compilation

e All techniques move runtime either into compile or design time. Application
tuning is not portable across programs.

e l|terative compilation allows great adaption to and specialisation to a processor
than PDC.

e However, over specialises to a data set. Makes sense when the behaviour of

a program is relatively data independent in the case of linear algebra or DSP
programs.

e Excessive design/compile time means only currently suitable for embedded
apps or libraries.

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

o School of _ e
= informatics

Summary

e Introduced profile directed compilation, program tuning and iterative
compilation

e All used runtime behaviour at compile/design time to select better
transformations

e Trade-off in number of runs vs eventual performance
e |terative techniques very good at porting and specialising to new platforms

e However, all rely on eventual on-line runtime data to be same as that visited
off-line. Poor at adapting to new data

M. O'Boyle Adaptive and Profile Directed Compilation March, 2014

