
Speculative Parallelisation

Michael O’Boyle

March, 2014

M. O’Boyle Parallelisation March, 2014



1

Course Structure

• 5 lectures on high level restructuring for parallelism

• Dependence Analysis

• Program Transformations

• Automatic vectorisation

• Automatic parallelisation

• Speculative Parallelisation

M. O’Boyle Parallelisation March, 2014



2

Lecture Overview

• Based on LPRD test: Speculative Run-time Parallelisation of loops with
privatization and reduction parallelism

– Lawrence Rachwerger PLDI 1995
– Expect you to read and understand this paper. Many follow up papers

• Types of parallel loops

• Irregular parallelism

• LPRD test and examples

M. O’Boyle Parallelisation March, 2014



3

Parallel Loop : DOALL Implementation

Do i = 1 , N

A(i) = B(i)

C(i) = A(i)

Enddo

p = get_num_proc()

fork (x_sub, p)

join()

SUBROUTINE x_sub()

p = get_num_proc()

z = my_id()

ilo = N/p * (z-1) +1

ihi = min(N, ilo+N/p)

Do i = ilo , ihi

A(i) = B(i)

C(i) = A(i)

Enddo

END

• Generate p independent threads of work

– Each has private local variables, z, ilo, ihi
– Access shared arrays A,B and C

M. O’Boyle Parallelisation March, 2014



4

Privatisation

Do i = 1 , N

temp = A(i)

A(i) = B(i)

B(i) = temp

Enddo

DO i = ilo , ihi

private temp

temp = A(i)

A(i) = B(i)

B(i) = temp

Enddo

• Temp is used as temporary storage on each iteration

– Its value is never used on subsequent iterations
– However there is a cross iteration anti-dependence and output dependence.
– Each local iteration of i happens in order
– Could scalar expand - but increase storage : O(1) to O(N)
– Alternatively each processor has a private copy: O(p) cost. p << N

M. O’Boyle Parallelisation March, 2014



5

Reduction Parallelism

Do i = 1 to N

a= a +B(i)

Enddo

pa(z) = 0

Do i = ilo, ihi

pa(z) = pa(z) + B(i)

Enddo

call barrier_sync()

if (z .EQ. 1)

Do x = 1,p

a = a + pa(x)

Enddo

endif

• Output flow and anti dependence

– But can perform partial sums in parallel and merge
– Works for associative and commutative operators

M. O’Boyle Parallelisation March, 2014



6

Irregular Parallelism

Do i = 1 to N

A(X(i))= A(Y(i)) +B(i)

Enddo

• Cross iteration Output dependent if any X(i1) = X(i2) i1 6= i2

• Cross iteration Flow/anti dependent if any X(i1) = Y(i2) i1 6= i2

• Dependence depends on values of X and Y - not compile-time knowable

• More than half scientific programs are irregular - sparse arrays

M. O’Boyle Parallelisation March, 2014



7

Runtime Parallelisation: The idea

Do i = 1 , N

A(i+k) = A(i) + B(i)

Enddo

if (-N < K< N)

Do i = 1 , N

A(i+k) = A(i) + B(i)

Enddo

else

Doall i = 1 , N

A(i+k) = A(i) + B(i)

Enddo

• Select dynamically between pre-optimised versions of the code

– Analysis at runtime
– Here check simple but can be more complex

M. O’Boyle Parallelisation March, 2014



8

Runtime Parallelisation: Irregular Applications

Do i = 1 , N

A(w(i)) = A(r(i)) + B(i)

Enddo

Assume parallel then

fallback if fail

DOALL i = 1 , N

trace (w(i), r(i))

A(w(i)) = A(r(i)) + B(i)

Enddo

Analyse

if (fail) // Sequential

DO i = 1 , N

A(w(i)) = A(r(i)) + B(i)

Enddo

endif

Loop not parallel if any r(i1) = w(i2), i16= i2

Collect data access pattern and verify if dependence could occur

M. O’Boyle Parallelisation March, 2014



9

Speculative Doall Marking and Analysis

• Record all accesses to shadows - one per processor. Check afterwards

• Parallel speculative execution

– Mark read and write operations into different private shadow arrays, marking
write implies clear read mark

– Increment private write counter (# write operations)

• Post speculation analysis

– Merge private shadow arrays to global shadow arrays
– Count elements marked write
– (write shadow && read shadow 6=0 )implies anti/flow dependence
– (# mod elems< #write ops) implies output deps

M. O’Boyle Parallelisation March, 2014



10

LRPD test Example

A(4), B(5),K(5), L(5)

Do i = 1,5

z = A(K(i))

if B(i) then

A(L(i)) = z + C(i)

endif

Enddo

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if A(K(i1)) = A(L(i2)) , i1 6= i2

M. O’Boyle Parallelisation March, 2014



11

LRPD test Marking phase

• Allocate shadow arrays Aw, Ar, Anp one per processor. O(np) overhead.
Speculatively privatise A and execute in parallel. Record accesses to data
under test in shadows

• Mark write()

– increment tw A (write counter)
– If first time A(i) written in iter, mark Aw(i), clear Ar(i)
– (Only concerned with cross-it deps)

• Mark read A(i):

– If A(i) not already written in iter, mark Ar(i) and mark Anp(i)
– Note Anp(i) not cleared by MarkWrite. np=not privatisable

M. O’Boyle Parallelisation March, 2014



12

LRPD test Marking phase

A(4), B(5),K(5), L(5)

Doall i = 1,5

z = A(K(i))

if B(i) then

markread(K(i))

markwrite(L(i))

A(L(i)) = z + C(i)

endif

Enddo

• Note markread occurs inside conditional

– Read to A only considered if z accessed.
– Otherwise ignore

M. O’Boyle Parallelisation March, 2014



13

LRPD test Results after marking

A(4), B(5),K(5), L(5)

Do i = 1,5

z = A(K(i))

if B(i) then

A(L(i)) = z + C(i)

endif

Enddo

B(1:5) = (1,0,1,0,1)

K(1:5) = (1,2,3,4,1)

L(1:5) = (2,2,4,4,2)

1 2 3 4
Aw(1:4) 0 1 0 1
Ar(1:4) 1 0 1 0

Anp(1:4) 1 0 1 0
Aw&&Ar 0 0 0 0

Aw&&Anp 0 0 0 0

tw =3, tm = 2

where tm(A) = sum over Aw

Total number of distinct elements written

M. O’Boyle Parallelisation March, 2014



14

LRPD test Analysis phase

• if Aw && Ar then NOT doall – read and write in diff iterations to same elem

• else if tw = tm then was a DOALL – unique iterator writes

• else if Aw && Anp then NOT doall

• otherwise loop privatisation valid, DOALL

Aw && Ar =0 : Fail
tw 6= tm : Fail

Aw && Anp =0 : Fail
Overall privatise - remove output dependence

M. O’Boyle Parallelisation March, 2014



15

LRPD test Marking phase: Handling reductions

• Extended to handle reductions

• Allocate shadow arrays Anx one per processor. O(np) overhead.

• Record accesses to data under test in shadows

• Mark Redux ()

– mark A(i) if element is NOT valid reference in reduction statement - not a
reduction variable

• Read paper for details and example

M. O’Boyle Parallelisation March, 2014



16

LRPD test Improvements

• One dependence can invalidate speculative parallelisation

– Partial parallelism not exploited
– Transform so that up till first dependence parallel
– Reapply on the remaining iterators.

• Large overheads

– Adaptive data structures to reduce shadow array overhead

• Large amount of work in speculative parallelisation

– Hardware support for TLS, transactional memory
– Compiler :Combined with static analysis

M. O’Boyle Parallelisation March, 2014



17

Summary

• Summary of parallelisation idioms

• Irregular accesses

• Shadow arrays

• Marking and analysis for doall and reductions

• Last lecture on parallelism. Next on adaptive compilation

M. O’Boyle Parallelisation March, 2014


