
Parallelisation

Michael O’Boyle

March 2014

M. O’Boyle Parallelisation March 2014

1

Lecture Overview

• Parallelisation for fork/join

• Mapping parallelism to shared memory multi-processors

• Loop distribution and fusion

• Data Partitioning and SPMD parallelism

• Communication, synchronisation and load imbalance.

M. O’Boyle Parallelisation March 2014

2

Approaches to parallelisation

• Two approaches to parallelisation

– Traditional shared memory. Based on finding parallel loop iterations
– Distributed memory compilation. Focus on mapping data, computation

follows

• Now single address space, physically distributed memory uses a mixture of
both.

• Actually, can show equivalence

M. O’Boyle Parallelisation March 2014

3

Loop Parallelisation

• Assume a single address space machine. Each processor sees the same set of
addresses. Do not need to know physical location of memory reference.

• Control- orientated approach. Concerned with finding independent iterations
of a loop. Then map or schedule these to the processor.

• Aim: find maximum amount of parallelism and minimise synchronisation.

• Secondary aim: improve load imbalance. Inter-processor communication not
considered.

• Main memory just part of hierarchy - so use uni-processor approaches.

M. O’Boyle Parallelisation March 2014

4

Loop Parallelisation: Fork/join

• Fork/join assumes that there is a forking of parallel threads at the beginning
of a parallel loop

• Each thread executes one or more iterations. Depend on later scheduling policy

• There is a corresponding join or synchronisation at the end

• For this reason loop parallel approaches favour outer loop parallelism

• Can use loop interchange to improve the fork/join overhead.

M. O’Boyle Parallelisation March 2014

5

Parallel Loop : DOALL Implementation

Do i = 1 , N

A(i) = B(i)

C(i) = A(i)

Enddo

p = get_num_proc()

fork (x_sub, p)

join()

SUBROUTINE x_sub()

p = get_num_proc()

z = my_id()

ilo = N/p * (z-1) +1

ihi = min(N, ilo+N/p)

Do i = ilo , ihi

A(i) = B(i)

C(i) = A(i)

Enddo

END

• Generate p independent threads of work

– Each has private local variables, z, ilo, ihi
– Access shared arrays A,B and C

M. O’Boyle Parallelisation March 2014

6

Loop Parallelisation: Using loop interchange

Do i = 1,N

Do j = 1,M

a(i+1,j) = a(i,j) +c

Enddo

Enddo

Do i = 1,N

Parallel Do j = 1,M

a(i+1,j) = a(i,j) +c

Enddo

Enddo

Do j = 1,M

Do i = 1,N

a(i+1,j) = a(i,j) +c

Enddo

Enddo

Parallel Do j = 1,M

Do i = 1,N

a(i+1,j) = a(i,j) +c

Enddo

Enddo

Interchange has reduced synchronisation overhead from O(N) to 1.

M. O’Boyle Parallelisation March 2014

7

Parallelisation approach

• Loop distribution eliminates carried dependences and creates opportunity for
outer-loop parallelism.

• However increases number of synchronisations needed after each distributed
loop.

• Maximal distribution often finds components too small for efficient
parallelisation

• Solution: fuse together parallelisable loops.

M. O’Boyle Parallelisation March 2014

8

Loop Fusion

• Fusion is illegal if fusing two loops causes the dependence direction to be
changed

Do i = 1,N

a(i) = b(i) +c

Enddo

Do i = 1,N

d(i) = a(i+1) +e

Enddo

Do i = 1,N

a(i) = b(i) +c

d(i) = a(i+1) +e

Enddo

• Profitability: Parallel loops should not generally be merged with sequential
loops: Tapered fusion

M. O’Boyle Parallelisation March 2014

9

Data Parallelism

• Alternative approach where we focus on mapping data rather than control flow
to the machine

• Data is partitioned/distributed across the processors of the machine

• The computation is then mapped to follow the data - typically such that work
writes to local data. Local write/owner computes rule.

• All of this is based on the SPMD computational model. Each processor runs
one thread executing the same program, operating on the different data

• This means that loop bounds change from processor to processor.

M. O’Boyle Parallelisation March 2014

10

Data Parallelism: Mapping

• Placement of work and data on processors. Assume parallelism found in a
previous stage

• Typically program parallelism O(n) is much greater than machine parallelism
O(p), n >> p

• We have many options as to how to map a parallel program

• Key issue: What is the best mapping that achieves O(p) parallelism but
minimises cost

• Costs include communication, load imbalance and synchronisation

M. O’Boyle Parallelisation March 2014

11

Simple Fortran example

Dimension Integer a(4,8)

Do i = 1, 4

Do j = 1,8

a(i,j) = i + j

Enddo

Enddo

 1 2 3 4 5 6 7 8
1

2

3

4

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

loop j

loop i

Iteration Space

Data Space

4

1

1 8

index 1

index 2

M. O’Boyle Parallelisation March 2014

12

Partitioning by columns of a and hence iterator j : Local writes

 1 2 3 4 5 6 7 8
1

2

3

4

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

loop j

loop i

Iteration Space

Data Space

4

1

1 8

index 1

index 2

P1 P2 P3 P4

Dimension Integer a(4,1..2)

Do i = 1, 4 Processor 1

Do j = 1,2

a(i,j) = i + j

Enddo

Enddo

...

Dimension Integer a(4,5..6)

Do i = 1, 4 Processor 3

Do j = 5,6

a(i,j) = i + j

Enddo

Enddo etc..

M. O’Boyle Parallelisation March 2014

13

Partitioning by rows of a and hence iterator i: Local writes

 1 2 3 4 5 6 7 8
1

2

3

4

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

loop j

loop i

Iteration Space

Data Space

4

1

1 8

index 1

index 2

P1

P2

P3

P4

P1

P2

P3

P4

Dimension Integer a(1..1,1..8)

Do i = 1, 1 Processor 1

Do j = 1,8

a(i,j) = i + j

Enddo

Enddo

...

Dimension Integer a(3..3,1..8)

Do i = 3, 3 Processor 3

Do j = 1,8

a(i,j) = i + j

Enddo

Enddo etc..

M. O’Boyle Parallelisation March 2014

14

Linear Program representation

Do i = 1,16

Do j = 1,16

Do k = i,16

c(i,j) = c(i,j)

+a(i,k)*b(j,k)

















−1 0 0
0 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1





















i

j

k



 ≤

















−1
−1

0
16
16
16

















Polytope AJ ≤ b. Access matrices Uc Ua Ub

[

1 0 0
0 1 0

]

c





i

j

k



 ,

[

1 0 0
0 0 1

]

a





i

j

k



 ,

[

0 1 0
0 0 1

]

b





i

j

k





Can we automatically generate code for each processor given that writes must be
local?

M. O’Boyle Parallelisation March 2014

15

Partitioning: Ex. 1st index: 4 procs: c(16,16), a(16,16),b(16,16)

Do i = 5,8

Do j = 1,16

Do k = i,16

c(i,j) = c(i,j)

+a(i,k)*b(j,k)

























−1 0 0
0 −1 0
1 0 −1
1 0 0
0 −1 0
0 0 −1

−1 0 0
1 0 0





























i

j

k



 ≤

























−1
−1

0
16
16
16
−5

8

























Partitioning: Determine local array bounds λz, υz for each processor 1 ≤ z ≤ p.

λ1 = 1, λ2 = 5, λ3 = 9, λ4 = 13 υ1 = 4, υ2 = 8, υ3 = 12, υ4 = 16

Determine local write constraint λz ≤ Uc ≤ υz, 5 ≤ i ≤ 8 and add to polytope

Works for arbitrary loop structures and accesses

M. O’Boyle Parallelisation March 2014

16

Load Balance : 4 procs

Do i = 1,16

Do j = 1,16

Do k = i,16

c(i,j) = c(i,j) +a(i,k)*b(j,k)

Assuming c, a,b are to be partitioned in a similar manner

How should we partition to minimise load imbalance?

• Row: 928,672,416,160 per processor, load imbalance: 384

• Column: 544 iterations per processor

Why this variation?

M. O’Boyle Parallelisation March 2014

17

Load Balance :

k

i

j

Partition by ””invariant” iterator j.

Can be expressed as a polytope condition

M. O’Boyle Parallelisation March 2014

18

Reducing Communication

We wish to partition work and data to reduce amount of communication or
remote accesses

Dimension a(n,n) b(n,n)

Do i = 1,n

Do j = 1,n

Do k = 1,n

a(i,j) = b(i,k)

Enddo

Enddo

Enddo

How should we partition to reduce communication?

M. O’Boyle Parallelisation March 2014

19

Reducing Communication :Column Partitioning

Each processor has columns of a and b allocated to it

Look at access pattern of second processor

P2 P1 P2 P3 P4

The columns of a scheduled to P2 access all of b n2 − n2

p
remote access

M. O’Boyle Parallelisation March 2014

20

Reducing Communication :Row Partitioning

Each processor has rows of a and b allocated to it

Look at access pattern of second processor

a b

P1

P2

P3

P4

The rows of a scheduled to P2 access corresponding rows of b.

0 remote accesses.

M. O’Boyle Parallelisation March 2014

21

Alignment

• The first index of a and b have the same subscript a(i,j), b(i,k)

• They are said to be aligned on this index

• Partitioning on an aligned index makes all accesses local to that array reference

[

1 0 0
0 1 0

]

a

,

[

1 0 0
0 0 1

]

b

Can transform array layout to make arrays more aligned for partitioning.

Find A such that AUx is maximally aligned with Uy

Global alignment problem

M. O’Boyle Parallelisation March 2014

22

Synchronisation

• Alignment information can also be used to eliminate synchronisation

• Early work in data parallelisation did not focus on synchronisation

• The placement of message passing synchronous communication between source
and sink would (over!) satisfy the synchronisation requirement

• When using data parallel on new single address space machines, have to
reconsider this.

• Basic idea, place a barrier synchronisation where there is a cross-processor
data dependence.

M. O’Boyle Parallelisation March 2014

23

Synchronisation

Do i = 1,16

a(i) = b(i)

Enddo

Do i = 1,16

c(i) = a(i)

Enddo

Do i = 1,16

a(17-i) = b(i)

Enddo

Do i = 1,16

c(i) = a(i)

Enddo

• Barrier placed between each loop. But are they necessary?

• Data that is written always local. (localwrite rule)

• Data that is aligned on partitioned index is local.

• No need for barriers here

M. O’Boyle Parallelisation March 2014

24

Summary

• VERY brief overview of auto- parallelism

• Parallelisation for fork/join

• Mapping parallelism to shared memory multi-processors

• Data Partitioning and SPMD parallelism

• Multi-core processor are common place

• Sure to be an active area of research for years to come

M. O’Boyle Parallelisation March 2014

