Vectorisation

Michael O'Boyle

February, 2013

School of

o
informatics

M. O’'Boyle

Vectorisation

February, 2013

o School of _ e
- informatics

Course Structure

e Course work deadline today. New coursework today - see website
e 4/5 lectures on high level restructuring for parallelism and memory
e Dependence Analysis

e Program Transformations

e Automatic vectorisation ch2 and 5 of Allen and Kennedy

e Automatic parallelisation

e Speculative Parallelisation

M. O'Boyle Vectorisation February, 2013

o School of _ e
s iInformatics

Lecture Overview

e \ector loops - how to write loops in a vector format

e Loop distribution + statement reordering: basic vectorisation

e Dependence condition for vectorisation: Based on loop level

e Kennedy's Vectorisation algorithm based on SCC and hierarchical dependences
e Loop Interchange: Move vector loops innermost

e Scalar Expansion, Renaming and Node splitting. Overcoming cycles

M. O'Boyle Vectorisation February, 2013

® School of _ o
= informatics

Vector code

e Use Fortran 90 vector notation to express vectorised loops.
e Triple notation used x(start:finish:step) to represent a vector in x

e Vectorisation depends on loop dependence

Do i = 1,N Do 1 =1,N

x(1) = x(1) +c x(i+1) = x(i) +c
Enddo Enddo
No loop carried dependence [0] Loop carried dependence [1]
Vectorisable Not vectorisable

x(1:N) = x(1:N) +c

M. O'Boyle Vectorisation February, 2013

o School of _ e
= iInformatics

Vector code: varying vector length

Vector registers are a fixed size. Need to fit code to registers
Do i =1,N,s

Do i =1,N Do i1 = i, 1i+s-1
x(i) = x(i) +c x(ii) = x(ii) +c
Enddo Enddo
Enddo
Original Strip-mine

Do 1 = 1,N,s
x(i:i+s-1) = x(i:i+s-1) +c
Enddo

Vectorise

M. O'Boyle Vectorisation February, 2013

= inf

Loop Distribution + Statement reordering

School of _ e

ormartics

Standard approach to isolating statements within a loop for later vectorisation

Do i =1,N
a(i+1l) = b(i) +c
d(i) = a(i) +c
Enddo

Do 1 =1,N

a(i+1l) = b(i) +c
Enddo
Do 1 =1,N

d(i) = a(i) +c
Enddo

a(2:N+1) = b(1:N) +c
d(1:N) = a(1:N) +e

Cyclic dependence prevent distribution and hence vectorisation.
techniques to overcome this.

Examine

M. O’'Boyle

Vectorisation

February, 2013

® School of _ o
= informatics

Inner loop vectorisation
OO0 0.0

Do i = 1,N %

Do j = 1,M i @).
a(i+l,j) = a(i,j) +c j '

Enddo

Enddo

Cannot vectorise as dependence (1,0). If outer loop run sequential then can
vectorise inner loop with dep (0). Generalises to nested loops.

Do 1 =1,N
a(i+1,1:M) = a(i,1:M) +c
Enddo

M. O'Boyle Vectorisation February, 2013

o School of _ o
= iInformatics

Vectorisation algorithm

e Simple description of Ch2 algorithm. Look at Ch2 for more details
e Form dependence graph
e Strongly Connected Component (SCC) identification (cycles)

e Separate out weakly connected and vectorise using loop distribution and
statement reordering

e Strip off outer dependence level (loop will be sequentialised) and repeat

M. O'Boyle Vectorisation February, 2013

® School of _ o
= informatics

Running Example

Do i = 1,100
sl x(i) = y(i) +10
Do j = 1,100

s2 b(j) = a(j,n)
Do k = 1,100
s3 a(j+1,k) = b(j) +c(j,k)
Enddo
s4 y(i+j) = a(j+1,n)
Enddo Enddo
Use d notation where d¥ is a dependence of type y at loop level x.

Loops numbered from outermost x=1 ... Infinity means within a loop, not loop
carried. y=o output, y=-1 anti else flow.

Loop carried flow dependence from s4 to sl ony. d;

M. O'Boyle Vectorisation February, 2013

Running Example with S1 dependences

sy
Do i = 1,100 (s2)
sl x(i) = y(@i) +10 |
Do j = 1,100 . s3)
s2 b(j) = a(j,n)
Do k = 1,100
s3 a(j+1,k) = b(j) +c(j,k) .
Enddo
s4 y(i+j) = a(j+1,n)
Enddo
Enddo

Loop carried flow dependence from s4 to sl ony. d;

No other dependences reach sl

= inf

School of _ e
ormatics

M. O'Boyle Vectorisation

February, 2013

o School of _ e
—= informatics

Running Example S2 dependences

b(j) in s2 has two flow dependences with s3 . Loop carried and loop independent
dl-dinf-

Corresponding loop carried anti dep from s3 to s2 dl_l. Finally loop carried output
dependence in s2 df

a(j+1,k) in s3 has a level one and level two flow dep with s2. Corresponding loop
carried antidep from s2 to s3.

M. O'Boyle Vectorisation February, 2013

School of
— informatics

Example S3 dependences

N
e

Loop carried and independent flow dependence from a(j+1,k) in s3 to s4

Corresponding loop carried anti-dep from s4. Output dependence

M. O'Boyle Vectorisation February, 2013

o School of _ e
- informatics

Example S4 dependences

5y
52

dr’
e Trivial loop carried output dependence in s4 at level 1 on write to y(i+j).

e Other dependence with sl already shown

M. O'Boyle Vectorisation February, 2013

o School of _ e
- informatics

Putting it all together

e Analysing connected components using Tarjan's algorithm. Two separate
groups (s1),(s2,s3,s4).

e Separate out sl by loop distribution. Statement reordering required here.

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Vectorisation algorithm

Apply on outer level vectorise (s1,s2,s3,s4,1).

sl not part of SC. Loop distribution and statement reordering and vectorised
gives

Do i = 1,100 Do i = 1,100

vectorise ({s2,s3,s4},2) vectorise ({s2,s3,s4},2)

Enddo Enddo

Do i = 1,100 x(1:100) = y(1:100) +10
s1 x(i) = y(i) +10

Enddo

Apply algorithm at next level stripping of level 1 dependences

M. O'Boyle Vectorisation February, 2013

o School of _ e
-~ informatics

Vectorise({s2,s3,s4},2) level 1 dependences stripped off

e Analysing connected components using Tarjan's algorithm. Two separate
groups (s4),(s2,s3).

e Separate out s4 by loop distribution. No Statement reordering required here.

M. O'Boyle Vectorisation February, 2013

o School of _ e
—= informatics

Vectorisation algorithm
Apply on level2 vectorise (s1,s2,53,2).
s4 not part of SCC. Isolated, distributed and vectorised giving

Do i = 1,100
Do j = 1,100
vectorise({s2,s3},3)
Enddo
s4 y(i+1:i+100) = a(2:101,N)
Enddo

sl x(1:100) = y(1:100) +10

e Apply vectorise again striping off next level

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Vectorise({s2,s3},3) level 1,2 dependences stripped off

&

3

e Analysing connected components using Tarjan's algorithm. Two separate
groups (s2),(s3).

e Separate out by loop distribution. No Statement reordering required here.

M. O'Boyle Vectorisation February, 2013

o School of _ e
- informatics

Vectorisation algorithm : Final code

Do 1 = 1,100
Do j = 1,100
s2 b(j) = a(j,n)
s3 a(j+1,1:100) = b(j) +c(j,1:100)
Enddo
s4 y(i+1:i+100) = a(2:101,N)
Enddo
sl x(1:100) = y(1:100) +10

As s2 has no loop of depth 3,distribution leaves a single statement.

e What happened if no vectorisable regions found?

e Try transformations

M. O'Boyle Vectorisation February, 2013

o School of _ e
-~ informatics

Loop Interchange: move loop carried dependences outermost

Do j = 1,M
Do i =1,N
a(i+1,j) = a(i,j) +c
Enddo
Enddo

[0,1] even if j run sequentially, loop carried dep - i not vectorisable.

e Do i = 1,N
Do J._ 1TM . a(i+1,1:N) = a(i,1:N) +c
a(i+1,j) = a(i,j) +c Enddo
Enddo
Enddo

Now [1,0] - inner loop vectorisable

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Scalar expansion

Do i = 1,N g1
t = a(i) S
a(i) = b(di)

b(i) =t

Enddo

Cycle in dependence graph prevents distribution and vectorisation (output not
shown)

Try to eliminate anti-dependence with scalar expansion

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Anti-dependence removed eliminating cycle

| 4| d
Do i = 1,N d
tt(i) = a(i)
a(i) = b(i)
b(i) =tt(i) @
Enddo
t =tt(N)

Can now be easily distributed and vectorised

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Scalar expansion :may fail with subsequent uses

tt(0) =t
Do 1 =1,N Do 1 =1,N
t= t+a(i) +a(i+1) tt(i)= tt(i-1)+a(i) +a(i+1)
a(i) =t a(i) =tt(i)
Enddo Enddo
t= tt (N)

e Whether or not scalar expansion can break cycles depends on whether it is a
covering definitions

e A covering definition for a use means that there are subsequent later uses.

e In practise recurrence on the scalar is the biggest problem.

M. O'Boyle Vectorisation February, 2013

o School of _ e
== informatics

Scalar Renaming

e Can be used to eliminate loop independent output and anti-dependences

Do i =1,N Do i =1,N

t= t+a(i) +b(di) tl= t+a(i) +b(di)
c(i) =t + t c(i) = t1 + t1
t = d(i) - (i) t2 = d(1i) - b(i)
a(i+l) =t *x t a(i+l) = t2 * t2
Enddo Enddo

e Scalar expansion, loop distribution and vectorisation now possible

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Node Splitting

e Scalar expansion and renaming cannot eliminate all cycles

d
1
Do i =1,N S
’ S 2
a(i) = x(i+1) +x (i) @ g1 Q
x(i+1)= b(i)+ t ”
Enddo

e Renaming does not break cycle. Critical anti-dependence

M. O'Boyle Vectorisation February, 2013

o School of _ e
== informatics

Node Splitting

e Make copy of node where anti-dep starts

Do 1 =1,N
xx (1) = x(i+1)
a(i) = xx(i) +x (1)
x(i+1)= b(i)+ ¢t
Enddo

e Cycle broken. Vectorisable with statement reordering:s0,s2,s1

e NP-C to find minimal critical deps !

M. O'Boyle Vectorisation February, 2013

o School of _ e
= informatics

Summary

e \ector loops

e Loop distribution

e Dependence condition for vectorisation

e Vectorisation algorithm based on SCC and hierarchical dependences
e Loop Interchange

e Scalar Expansion, Renaming and Node splitting

e Used in Media SIMD instructions/ GPUs

M. O'Boyle Vectorisation February, 2013

