
Compiler Optimisation

Michael O’Boyle
mob@inf.ed.ac.uk

Room 1.06

January, 2014

M. O’Boyle Compiler Optimisation January, 2014

1

Recommended texts

Two recommended books for the course

• Engineering a Compiler Engineering a Compiler by K. D. Cooper and L.
Torczon. Published by Morgan Kaufmann 2003

• Optimizing Compilers for Modern Architectures: A Dependence-based
Approach by R. Allen and K. Kennedy. Published Morgan Kaufmann 2001

• Advanced Compiler Design and Implementation by Steven S. Muchnick, published by Morgan

Kaufmann. (extra reading - not required)

Additional papers especially for the later part of course - beyond books

Note Slides do not replace books. Provide motivation, concepts and examples
not details.

M. O’Boyle Compiler Optimisation January, 2014

2

How to get the most of the course

• Read ahead including exam questions and use lectures to ask questions

• L1 is a recap and sets the stage. Check you are comfortable

• Take notes.

• Do the course work and write well. Straightforward - schedule smartly.

• Exam results tend to be highly bi-modal

• If you are struggling, ask earlier rather than later

• If you don’t understand - it’s probably my fault - so ask!

M. O’Boyle Compiler Optimisation January, 2014

3

Course Structure

• L1 Introduction and Recap

• L2 Course Work - again updated from last year

• 4-5 lectures on classical optimisation (Based on Engineering a Compiler)

• 5-6 lectures on high level/parallel (Based on Kennedy’s book + papers)

• 4-5 lectures on adaptive compilation (Based on papers)

• Additional lectures on course work/ revision/ external talks/ research directions

M. O’Boyle Compiler Optimisation January, 2014

4

Overview - Recap

• Compilation as translation and optimisation

• Compiler structure

• Phase order lexical, syntactic, semantic analysis

• Naive code generation and optimisation

• Next lecture looks at coursework and then focus on scalar optimisation -middle
end

M. O’Boyle Compiler Optimisation January, 2014

5

Compilation

• Compilers : map user programs to hardware. Translation - must be correct

• Hide underlying complexity. Machines are not Von Neumann

• Current focus : Optimisation go faster, smaller, cooler.

• 40+ years. In general undecidable, sub-problems at least NP-complete

• Try to solve undecidable problem in less time than execution!

• Tackling a universal systems problem: Java to x86, VHDL to netlists etc.

• Gap between potential performance and actual widening - compilers help?

M. O’Boyle Compiler Optimisation January, 2014

6

Compilation as translation vs optimisation

• Modern focus is on exploiting architecture features

• Exploiting parallelism: instruction, thread, multi-core, accelerators

• Effective management of memory hierarchy registers,LI,L2,L3,Mem,Disk

• Small architectural changes have big impact

• Compilers have to be architecture aware -codesign e.g. RISC

• Optimisation at many levels source, internal formats, assembler

M. O’Boyle Compiler Optimisation January, 2014

7

Compiler structure

source Front
End

HL
AST

Restruct HL
AST

Middle
End

Low
IR

Back
End

assembler

• Front end translates “strings of characters” into a structured abstract syntax
tree

• Middle end attempt machine independent optimisation. Can also include
“source to source” transformations - restructurer - outputs a lower level
intermediate format

• Many choices for IRs. Affect form and strength of later analysis or optimisation

• Backend: code generation, instruction scheduling and register allocation

M. O’Boyle Compiler Optimisation January, 2014

8

Phase Order

• Lexical Analysis: Finds and verifies basic syntactic items - lexemes, tokens
using finite state automata

• Syntax Analysis: Checks tokens follow a grammar based on a context free
grammar and builds an Abstract Syntax Tree (AST)

• Semantic Analysis: Checks all names are consistently used. Various type
checking schemes employed. Attribute grammar to Milner type inference.
Builds a symbol table

• Optimisation + Code generation - later lectures

M. O’Boyle Compiler Optimisation January, 2014

9

Lexical Analysis

Tokens include keywords int, identifiers main update and constants 10E6

Tokens defined using regular expression (RE), alphabet Σ, |, ∗, ǫ

Input to scanner generators translated to NFA and simplified to DFA

Number of states = size of table. No impact on scan time complexity

Modern languages use white space as separators. DO i = 1 . 16 !

ℓ = (a|b|...|z|A|B...|Z)

d = (0|1|..|9)

integer = dd∗

real = dd ∗ .dd∗

exp = dd ∗ .dd∗Edd∗

M. O’Boyle Compiler Optimisation January, 2014

10

Lexical Analysis as deterministic finite automata

d
d

d
d d

d
d

d
d d

d

d

.

.

exit

exit

exit
E

Int

Real

Exp

How are the following classified?

0, 01, 2.6, 2., 2.6E2 and 2E20

M. O’Boyle Compiler Optimisation January, 2014

11

Syntax Analysis

Tokens form the words or terminals for the grammar.

RE not powerful enough. Use context free grammar (CFG) based on BNF variants

Next strip out syntax sugar and builds AST

Form of CFG determines type of language and parser family.

Top down vs Bottom up. Automation, error handling. Grammar rewriting

expr = term (op expr)

term = number | id

op = ∗| + |−

Example: parse x − 2 ∗ y

M. O’Boyle Compiler Optimisation January, 2014

12

Syntax Analysis x − 2 ∗ y

expr

opterm

id − term expr

expr

op

* term

id

y

number

2

x

Impact on binding of operators. x − 2 ∗ y is parsed as x − (2 ∗ y).
What about x ∗ 2 − y?

M. O’Boyle Compiler Optimisation January, 2014

13

The Abstract Syntax Tree
expr

opterm

id − term expr

expr

op

* term

id

y

number

2

x

−

x *

2 y
The straightforward parse tree has many intermediate steps that can be eliminated

This cutdown tree is known as the abstract syntax tree and is a central data
structure used by compilers

M. O’Boyle Compiler Optimisation January, 2014

14

Semantic Analysis

• One name can be used for different vars depending on scope. Symbol table

• Type checking. Attribute grammars augment BNF rules with type rules

expr = term (op expr) expr.type = term.type (Fop expr.type)
term = num | id term.type = num.type | id.type
op = ∗| + |− Fop = F∗|F+|F−

x − 2 ∗ y int:x, real:y, int <real

Difficult to add non-local knowledge : Ad-hoc syntax approaches, yacc

Higher order functional languages and dynamic typing make things interesting

M. O’Boyle Compiler Optimisation January, 2014

15

Semantic Analysis x − 2 ∗ y int:x, real:y, int <real

−

x *

2 y

int

int real

int

int realF

int real

real realreal

real

real

Can be used for type inconsistencies/errors

int

real

int real doubleF

double

int real

realreal

doubledouble

double

M. O’Boyle Compiler Optimisation January, 2014

16

Basic Code Generation

• Translate AST in to assembler. Walk through the tree and emit code based
on node type

• Handle procedure calls and storage layouts. Assume activation record pointer
in register r0

• Loading value x into register r3 - ILOC instruction set (EaC)

loadI @x − > r1 @x− > r1 (Not a mem op) Load address offset

loadA0 r0, r1 − > r3 Mem[r0 + r1] − > r3

M. O’Boyle Compiler Optimisation January, 2014

17

Code Generation

Typical top down generator - left to right

x − 2 ∗ y

case op

gen(left(node), right(node), op(node))

case identifier

reg = nextreg()

gen(loadI, offset(node),reg)

gen(loadA0, r0,reg,reg)

case num

gen(loadI, val(node),nextreg())

Optimisations include elimination of redundancy. Unnecessary loads

This scheme assumes unbounded registers - nextreg()

M. O’Boyle Compiler Optimisation January, 2014

18

Code Generation

−

x *

2 y

1

2 3

4

5

loadI @x -> r1 1
loadA0 r0,r1 -> r1 1
loadI 2 -> r2 2
loadI @y -> r3 3
loadA0 r0,r3 ->r3 3
mult r2,r3 -> r3 4
sub r1,r3->r3 5

3 registers used

M. O’Boyle Compiler Optimisation January, 2014

19

Optimisation

Generate more efficient code -eliminate redundancy

a = b*c +d t = b*c
e = 2-b*c a = t +d

e = 2- t

Different traversal - less registers

−

x *

2 y 12

34

5 loadI @y -> r1
loadA0 r0,r1 -> r1
loadI 2 -> r2
mult r2,r1 -> r1
loadI @x -> r2
loadA0 r0,r2->r2
sub r2,r1->r2

M. O’Boyle Compiler Optimisation January, 2014

20

Machine models/ Optimisation goals

In first part of course

• Assume uni-processor with instruction level parallelism, registers and memory

• Generated assembler should not perform any redundant computation

• Should utilise all available functional units and minimise impact of latency

• Register access is fast compared to memory but limited in number . Use wisely

• Two flavours considered superscalar out-of-order vs VLIW: Dynamic vs static
scheduling

Later consider multi-core architecture

M. O’Boyle Compiler Optimisation January, 2014

21

Summary

• Compilation as translation and optimisation

• Compiler structure

• Phase order lexical, syntactic, semantic analysis

• Naive code generation and optimisation

• Next lecture course work

• Monday next week Jan 20 lecture postponed

• Then scalar optimisation - middle end

M. O’Boyle Compiler Optimisation January, 2014

