
Compiler Optimisation 2014

Course Project

Michael O’Boyle
Chris Margiolas

January 2014

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Course Work

• Based on GCC compiler

• One piece of course work: 25 % of course mark

• Set today and due Thursday 4pm February 27th week 6

• Feedback due Thursday March 13th week 8

• Penalties for late submission.

• Plagiarism software used. Do your own work!

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



The Goal of the Project

• Evaluate different compiler optimisation settings on a set of
benchmarks.

• Analyse the performance of each benchmark under different
settings.

• Write a report about your methodology and your findings.

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Program Optimisation in GCC

• GCC supports some simple levels of optimisations: -O1, -O2,
-O3

• At each level, a set of optimisations are enabled (25 for O1,
25+29 for O2 and 19+28+6 for O3)

• At higher levels, more optimisations are enabled which results
in potentially faster code, but also slows down the compilation
process.

• Rather than using these pre-defined optimisation options, the
users can enable individual options themselves,
e.g. "-funroll-loops".

• For more information on optimisation options see
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Methodology: Evaluating Compiler Flags

• Always use -O1: basic optimizations, likely to be beneficial

• Pick 10 optimizations from -O2 and all 6 from -O3; see
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• Additionally consider loop unrolling (-funroll-loops) with
max-unroll-times of 2, 4, 8, 16 or 32

⇒ 216
+ 216

× 5 = 393216 possible combinations

• Evaluate 200 randomly chosen configurations
(i.e. combinations of optimizations)

• Use the same configurations for all benchmarks!

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Running Experiments

• Avoid noise:

• Make sure noone else is logged on to the computer (using
who) and no other applications are running (using top).

• Don’t run on top of AFS ⇒ use /disk/scratch or /tmp.
• BUT: move the results back to your home-directory and don’t

leave the data accessible to everyone

• Run benchmarks at least 10 times to get stable results.

• Determine how many measurements you need to get a stable
value.

• Compute and report average runtime.
• Also report the variance and the number of iterations you used.

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Running Experiments - Cont.

• Use scripting languages (such as Perl) to automate the
process of evaluating optimisations on the benchmark
programs.

• Example (pseudo code)

for each b in benchmarks
for each o in optimisations

compile b with o
run b N times and record runtimes
calculate average runtime and variance

end
end

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



The Benchmarks

• We use 14 benchmarks from the SPEC CPU2006 and
MediaBench II suites.

• CPU intensive benchmarks developed from real user
applications.

• Download and extract the programs (use wget) from:

https://docs.google.com/file/d/0B5GasMlWJhTOaTdvaFkzUzNobDQ/edit

• Let Chris or myself know if you need more disk space!

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Directory Structure

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Compiling and Running the Benchmarks

• Compiling a program with certain optimisations enabled and
executing it a single time:
cd 400.perlbench/src/
make CFLAGS="-funroll-loops --param max-unroll-times=4"

cd ../
./run.sh

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Report and Results

• Maximum 5 pages + 2 pages for results

• Explain what you have done.
• Precisely describe the experimental setup.

• Architecture and platform. Timing method.
• Number of runs per benchmark/configuration

• For every program report performance of:
• Baseline -O0, -O1, -O2, -O3
• Best found flags for individual program.
• Best found single set of flags across all programs.
• Average across all flag settings (expected random

performance).

• Results should be detailed: per-program, average, variance

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Report and Results - contd.

• Store all raw data in a file. For each program:
• First line: program name
• Following lines: flag setting and all runtimes
• Runtimes in milliseconds, without decimal digits

400.perlbench
"-O0" 837 833 890 850 813 828 ...
"-O1" 602 620 610 611 650 580 ...
...
401.bzip2
"-O0" 837 833 890 850 813 828 ...
"-O1" 602 620 610 611 650 580 ...
...

• e-mail file to: c.margiolas@ed.ac.uk WITH the subject:
copt-results

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Report Structure

• Abstract. (Summary of paper) and Introduction

• Evaluation methodology: Selection of flags, etc.

• Experimental setup: Platform. How time was measured.
Number of runs.

• Results (for each program)
• Baseline -O0, -O1, -O2, -O3
• Best found flags for individual program.
• Best found single set of flags across all programs.
• Average across all flag settings (expected random

performance).

• Analysis and Discussion of Results. Followed by conclusion.

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Submission. Awarding of Marks

• Submit to ITO written report by 4pm Thursday 27th February.

• Marks are awarded for clear explanation of experimental
methodology and thorough analysis of results.

• Remember wish to see optimization setting that gives best
results per program AND the setting that is best for all the
benchmarks.

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk



Final Remarks

• For further questions
• e-mail: c.margiolas@ed.ac.uk

• Start early!!
It takes time to run the experiments!

• Deadline: Thursday 27/02/2014 4pm

• No lecture on Monday 20/1 - next lecture on Thursday 23/1

Michael O’Boyle,Chris Margiolas www.inf.ed.ac.uk

c.margiolas@ed.ac.uk

