Software Defined Networking (SDN)

UG3 Computer Communications & Networks
(COMN)

Mahesh Marina
mahesh@ed.ac.uk

Slides copyright of Kurose and Ross

http://ed.ac.uk

Software defined networking (SDN)

 Internet network layer: historically has been
Implemented via distributed, per-router
approach

— monolithic router contains switching hardware,

runs proprietary implementation of Internet
standard protocols (IP, RIP, IS-IS, OSPF, BGP) in
proprietary router OS (e.g., Cisco |0S)

— different “middleboxes” for different network layer
functions: firewalls, load balancers, NAT boxes, ..

« ~2005: renewed interest in rethinking network
control plane

Network Layer: Control Plane 5.2

Recall: per-router control plane

Individual routing algorithm components in each and every
router interact with each other in control plane to compute
forwarding tables

control
plane

data
plane

Network Layer: Control Plane

5-3

Recall: logically centralized control plane

A distinct (typically remote) controller interacts with local

control agents (CAs) in routers to compute forwarding tables

control
plane

Network Layer: Control Plane

5-4

Software defined networking (SDN)

Why a logically centralized control plane?

easier network management: avoid router
misconfigurations, greater flexibility of traffic flows

table-based forwarding (OpenFlow APl coming up
shortly) allows “programming” routers

— centralized “programming’” easier: compute tables centrally
and distribute

— distributed “programming: more difficult: compute tables as
result of distributed algorithm (protocol) implemented in
each and every router

open (non-proprietary) implementation of control
plane

Enables and eases innovation

Network Layer: Control Plane

5-5

Analogy: mainframe to PC evolution-

Specialized
Applications]

| - |II}|‘
Specialized
Operating

P System

Specialized
Hardware

Vertically integrated
Closed, proprietary
Slow innovation
Small industry

* Slide courtesy: N. McKeown

=)

e JL)]

—— Open Interface

— Open Interface —

B | Microprocessor

RS ‘/

Horizontal
Open interfaces
Rapid innovation

Huge industry

Network Layer: Control Plane

5-6

Traffic engineering: difficult traditional routing

Q: what if network operator wants u-to-z traffic to flow along
uvwz, x-to-z traffic to flow xwyz?

A: need to define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

Link weights are only control "knobs”: wrong!

Network Layer: Control Plane 5.7

Traffic engineering: difficult

Q. what if network operator wants to split u-to-z
traffic along uvwz and uxyz (load balancing)?
A: can’t do it (or need a new routing algorithm)

Network Layer: Control Plane

5-8

Networking 401
Traffic engineering: difficult

Q: what if w wants to route blue and red traffic

differently?

A: can’t do it (with destination based forwarding, and LS,
DV routing)

Network Layer: Control Plane 5-9

Software defined networking (SDN)

4. programmable 3. control plane

control - - - functions

applications ; external to data-
plane switches

—» Remote Controller —

=t control
plane

2. control,
data plane
separation

1: generalized” flow-
based” forwarding
(e.qg., OpenFlow)

Network Layer: Control Plane 5-10

Generalized Forwarding and SDN

Each router contains a flow table that is computed and
distributed by a logically centralized routing controller

logically-centralized routing controller

1T Bl @EA (WEi (N
control plane

data plane

local flow table

headers |counters |actions

values in arriving
packet’s header

v

Network Layer: Data Plane 4-11

OpenFlow data plane abstraction

* flow: defined by header fields
* generalized forwarding: simple packet-handling rules

— Pattern: match values in packet header fields

— Actions: for matched packet: drop, forward, modify matched packet or
send matched packet to controller

— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

o N

Flow table in a router (computed and distributed by
controller) define router’s match+action rules

Network Layer: Data Plane 4-12

OpenFlow data plane abstraction

* flow: defined by header fields
* generalized forwarding: simple packet-handling rules

— Pattern: match values in packet header fields

— Actions: for matched packet: drop, forward, modify, matched packet or
send matched packet to controller

— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

- N

* - wildcard

1. src=1.2.*.*, dest=3.4.5.* = drop
2. src=***7* dest=3.4.*.* - forward(2)
3. src=10.1.2.3, dest=*.*.* * - send to controller

OpenFlow: Flow Table Entries

Rule Action Stats
Packet + byte counters
1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields
Switch | VLAN | MAC | MAC | Eth P P P TCP [TCP
Port ID src dst type | Src Dst Prot | sport | dport

| |
Link layer Network layer

Transport layer

Examples

Destination-based forwarding:

Switch MAC |MAC [Eth LAN (IP IP IP TCP [TCP Action
Port rc dst ype [ID Src Dst Prot [sport [dport
* * * * * * 51.6.0.8 * * * port6

IP datagrams destined to IP address 51.6.0.8 should
be forwarded to router output port 6

Firewall:

Switch MAC |MAC [Eth LAN (IP IP IP TCP [TCP Forward
Port rc dst ype [ID Src Dst Prot [sport [dport

% * * * * * * * * 22 drop

do not forward (block) all datagrams destined to TCP port 22

Switch MAC |MAC [Eth LAN [IP IP IP TCP [TCP Corward
Port rc dst ype [ID Src Dst Prot [sport [dport
% * * * * 128.119.1.1 %k % * * drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

Switch MAC |MAC [Eth LAN (IP IP IP TCP [TCP Action
Port rc dst ype [ID Src Dst Prot [sport [dport
* ﬁ’é;g; * * * * * * * port3

layer 2 frames from MAC address 22:A7:23:11:E1:02
should be forwarded to output port 6

Network Layer: Data Plane 4-16

OpenFlow abstraction

= match+action: unifies different kinds of devices

= Router = Firewall
* match: longest * match: IP addresses
destination IP prefix and TCP/UDP port
 action: forward out numbers
a link * action: permit or
= Switch deny
* match: destination = NAT
MAC address * match: IP address
* action: forward or and port
flood * action: rewrite

address and port

Network Layer: Data Plane 4-17

OpenFlow example

match action
IP Src = 10.3.*.* W Host e
— « » | forward(3)
P Dst=10.2" «;{I/ 10.3.0.6
g .g=
4
10.1.0.1 °
p” qust h2
<zane> 10.1.0.2
match action
ingress port = 1
IP Src = 10.3.*.* | forward(4)
IP Dst = 10.2.*.*

g

. match action

Host h3
10.2.0.3

Example: datagrams from
hosts h5 and h6 should
be sent to h3 or h4, via s1
and from there to s2

./ Host h4
o i 10.2.04

ingress port = 2

P Dst = 10.2.0.3| forward(3)

ingress port = 2
IP Dst = 10.2.0.4

forward(4)

SDN perspective: data plane switches

Data plane switches

* fast, simple, commodity switches
implementing generalized data-
plane forwarding (Section 4.4) in
hardware

* switch flow table computed,
installed by controller

 API for table-based switch
control (e.g., OpenFlow)
— defines what is controllable and

what is not T
* protocol for communicating 52
. = (> data
with controller (e.g., OpenFlow -*- plane
(e.g., Op) = |

SDN-controlled switches
Network Layer: Control Plane 5-19

SDN perspective: SDN controller

SDN controller (network
0S): A
= maintain network state

information

= interacts with network comtrl

control applications “above” ---------- e T API | plane
via northbound API

= |nteracts with network SDN Controller
switches “below” via E (network operating system)
southbound API
southbound API v

= implemented as distributed = _________2U%e0C
system for performance, T
scalability, fault-tolerance, data
robustness l

Network Layer: Control Plane 5-20

SDN perspective: control applications

network-control apps:

“brains” of control:
implement control functions
using lower-level services,
API provided by SDN

controller

unbundled: can be provided
by 3 party: distinct from
routing vendor, or SDN
controller

Network Layer: Control Plane 5-21

network-control applications

control
plane

data
plane

Components of SDN controller

Interface layer to

network control
apps: abstractions
API

Network-wide state
management
layer: state of
networks links,
switches, services:
a distributed

database
communication

layer.
communicate
between SDN
controller and
controlled
switches

SDN
controller

Network Layer: Control Plane 5-22

OpenFlow protocol

* operates between
OpenFlow Controller controller, switch

Cropenfiow * TCP used to exchange
- messages

— optional encryption

* three classes of
OpenFlow messages:

— controller-to-switch

— asynchronous (switch
to controller)

— symmetric (misc)

Network Layer: Control Plane 5-23

OpenFlow: controller-to-switch messages

Key controller-to-switch messages

* features: controller queries switch
features, switch replies

OpenFlow

-

p@nFlow Controller

* configure: controller queries/sets
switch configuration parameters

* modify-state: add, delete, modify
flow entries in the OpenFlow
tables

* packet-out: controller can send this
packet out of specific switch port

Network Layer: Control Plane 5-24

OpenFlow: switch-to-controller messages

Key switch-to-controller messages
. . OpgnFlow Controller
* packet-in: transfer packet (and its

control) to controller. See packet-
out message from controller

" OpenFlow
- ~
7 ~
’

* flow-removed: flow table entry
deleted at switch

* port status: inform controller of a
change on a port.

Fortunately, network operators don’t “program” switches
by creating/sending OpenFlow messages directly.
Instead use higher-level abstraction at controller

Network Layer: Control Plane 5-25

SDN: control/data plane interaction

example

Dijkstra’s link-state
Routing

network RESTful @ intent
graph API InEi
91_

row tables
(2

“Gperron [FRN s

@ S1, experiencing link failure
using OpenFlow port status
message to notify controller

SDN controller receives
OpenFlow message,
updates link status info

(3) Dijkstra’s routing algorithm
application has previously
registered to be called when
ever link status changes. It
is called.

(4) Dijkstra’s routing algorithm
access network graph info,
link state info in controller,
computes new routes

Network Layer: Control Plane 5-26

SDN: control/data plane interaction example

(5) link state routing app
interacts with flow-table-
computation component in
SDN controller, which
computes new flow tables
needed

Controller uses OpenFlow
to install new tables in
switches that need updating

Network Layer: Control Plane 5-27

OpenDaylight (ODL) controller

Traffic .
Engineering = ODL Lithium

-------------------------------------- controller
= network apps may

Network Basic Network Service Functions be C_Ontalned
service apps Wlthln, or be

Access topology switch external to SDN
Control manager manager manager
controller
forwarding host .
manager manager - Sewlce

Abstraction Layer:
Service Abstraction Layer SAL) Interconnects

internal, external

Services

Network Layer: Control Plane 5-28

ONOS controller

Network
control apps

= control apps
separate from
controller

= ntent framework:

specification of

rather than how

= considerable
device | link | host | flow | packet emphasis on
OpenFlow | Netconf | OVSDB distributed core:
service reliability,
replication
performance
scaling

Network Layer: Control Plane 5-29

SDN: selected challenges

* hardening the control plane: dependable,
reliable, performance-scalable, secure
distributed system

— robustness to failures: leverage strong theory of
reliable distributed system for control plane

— dependability, security: “baked in” from day one?

* networks, protocols meeting mission-specific
requirements

— e.g., real-time, ultra-reliable, ultra-secure
* |Internet-scaling

Network Layer: Control Plane 5-30

