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ABSTRACT
Over the Internet today, computing and communications environments are

significantly more complex and chaotic than classical distributed systems, lacking any
centralized organization or hierarchical control. There has been much interest in

emerging Peer-to-Peer (P2P) network overlays because they provide a good substrate
for creating large-scale data sharing, content distribution, and application-level 

multicast applications. These P2P overlay networks attempt to provide a long list of
features, such as: selection of nearby peers, redundant storage, efficient search/loca-

tion of data items, data permanence or guarantees, hierarchical naming, trust and
authentication, and anonymity. P2P networks potentially offer an efficient routing
architecture that is self-organizing, massively scalable, and robust in the wide-area,

combining fault tolerance, load balancing, and explicit notion of locality. In this 
article we present a survey and comparison of various Structured and Unstructured
P2P overlay networks. We categorize the various schemes into these two groups in

the design spectrum, and discuss the application-level network performance 
of each group.
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eer-to-peer (P2P) overlay networks are distributed sys-
tems in nature, without any hierarchical organization
or centralized control. Peers form self-organizing over-

lay networks that are overlayed on the Internet Protocol (IP)
networks, offering a mix of various features such as robust
wide-area routing architecture, efficient search of data items,
selection of nearby peers, redundant storage, permanence,
hierarchical naming, trust and authentication, anonymity, mas-
sive scalability, and fault tolerance. Peer-to-peer overlay sys-
tems go beyond services offered by client-server systems by
having symmetry in roles where a client may also be a server.
It allows access to its resources by other systems and supports
resource sharing, which requires fault-tolerance, self-organiza-
tion, and massive scalability properties. Unlike Grid systems,
P2P overlay networks do not arise from the collaboration
between established and connected groups of systems and
without a more reliable set of resources to share.

We can view P2P overlay network models spanning a wide
spectrum of the communication framework, which specifies a
fully-distributed, cooperative network design with peers build-
ing a self-organizing system. Figure 1 shows an abstract P2P
overlay architecture, illustrating the components in the over-
lay

The Network Communications layer describes the network
characteristics of desktop machines connected over the Inter-
net or small wireless or sensor-based devices that are connect-
ed in an ad-hoc manner. The dynamic nature of peers poses
challenges in the communication paradigm. The Overlay
Nodes Management layer covers the management of peers,
which include discovery of peers and routing algorithms for
optimization. The Features Management layer deals with the
security, reliability, fault resiliency, and aggregated resource
availability aspects of maintaining the robustness of P2P sys-
tems. The Services Specific layer supports the underlying P2P
infrastructure and the application-specific components
through scheduling of parallel and computation-intensive
tasks, content and file management. Meta-data describes the
content stored across the P2P peers and the location informa-
tion. The Application-level layer is concerned with tools,
applications, and services that are implemented with specific
functionalities on top of the underlying P2P overlay infra-
structure. Thus, there are two classes of P2P overlay networks:
Structured and Unstructured.

The technical meaning of structured is that the P2P overlay
network topology is tightly controlled and content is placed
not at random peers but at specified locations that will make

P
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subsequent queries more efficient. Such structured P2P sys-
tems use the Distributed Hash Table (DHT) as a substrate, in
which data object (or value) location information is placed
deterministically, at the peers with identifiers corresponding
to the data object’s unique key. DHT-based systems have a
property that consistently assigned uniform random NodeIDs
to the set of peers into a large space of identifiers. Data
objects are assigned unique identifiers called keys, chosen
from the same identifier space. Keys are mapped by the over-
lay network protocol to a unique live peer in the overlay net-
work. The P2P overlay networks support the scalable storage
and retrieval of {key,value} pairs on the overlay network, as
illustrated in Fig. 2. Given a key, a store operation
(put(key,value)) lookup retrieval operation (value=get(key))
can be invoked to store and retrieve the data object corre-
sponding to the key, which involves routing requests to the
peer corresponding to the key.

Each peer maintains a small routing table consisting of its
neighboring peers’ NodeIDs and IP addresses. Lookup
queries or message routing are forwarded across overlay paths
to peers in a progressive manner, with the NodeIDs that are
closer to the key in the identifier space. Different DHT-based
systems will have different organization schemes for the data
objects and its key space and routing strategies. In theory,
DHT-based systems can guarantee that any data object can be
located in small O(logN) overlay hops on average, where N is
the number of peers in the system. The underly-
ing network path between two peers can be sig-
nificantly different from the path on the
DHT-based overlay network. Therefore, the
lookup latency in DHT-based P2P overlay net-
works can be quite high and could adversely
affect the performance of the applications run-
ning over it. Plaxton et al. [1] provide an elegant
algorithm that achieves nearly optimal latency on
graphs that exhibit power-law expansion [2], at
the same time preserving the scalable routing
properties of the DHT-based system. However,
this algorithm requires pair-wise probing between
peers to determine latencies, and it is unlikely to
scale to a large number of peers in the overlay.
DHT-based systems [3–7] are an important class
of P2P routing infrastructures. They support the
rapid development of a wide variety of Internet-
scale applications ranging from distributed file
and naming systems to application-layer multi-
cast. They also enable scalable, wide-area
retrieval of shared information.

In 1999 Napster [8] pioneered the idea of a
peer-to-peer file sharing system supporting a
centralized file search facility. It was the first sys-
tem to recognize that requests for popular con-
tent need not be sent to a central server but
instead could be handled by many peers that
have the requested content. Such P2P file-shar-
ing systems are self-scaling in that as more peers
join the system, they add to the aggregate down-
load capability. Napster achieved this self-scaling
behavior by using a centralized search facility
based on file lists provided by each peer; thus, it
does not require much bandwidth for the central-
ized search. Such a system has the issue of a sin-
gle point of failure due to the centralized search
mechanism. However, a lawsuit filed by the
Recording Industry Association of America
(RIAA) attempted to force Napster to shut down
the free-for-all file-sharing service for copyright-

ed digital music — literally, its killer application. However, this
paradigm caught the imagination of platform providers and
users alike. Gnutella [9–11] is a decentralized system that dis-
tributes both the search and download capabilities, establish-
ing an overlay network of peers. It is the first system that
makes use of an unstructured P2P overlay network. An
unstructured P2P system is composed of peers joining the net-
work with some loose rules, without any prior knowledge of
the topology. The network uses flooding as the mechanism to
send queries across the overlay with a limited scope. When a
peer receives the flood query, it sends a list of all content
matching the query to the originating peer. While flooding-
based techniques are effective for locating highly replicated
items and are resilient to peers joining and leaving the system,
they are poorly suited for locating rare items. Clearly this
approach is not scalable as the load on each peer grows lin-
early with the total number of queries and the system size.
Thus, unstructured P2P networks face one basic problem:
peers readily become overloaded, and thus the system does
not scale when handling a high rate of aggregate queries and
sudden increases in system size.

Although structured P2P networks can efficiently locate
rare items since the key-based routing is scalable, they incur
significantly higher overheads than unstructured P2P networks
for popular content. Consequently, over the Internet today
the decentralized unstructured P2P overlay networks are more

n Figure 1. An abstract P2P overlay network architecture.

Applications

Services
management

Security
management

Resource
management

Reliability and
fault resiliency

Routing and
location lookup

Resources
discovery

Network

Services
messaging

Meta-data

Services scheduling

Tools Services Application-level
layer

Services-specific
layer

Features
managment layer

Overlay nodes
management layer

Network
communications

layer

n Figure 2. Application interface for structured DHT-based P2P overlay sys-
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commonly used. However, there are recent efforts on key-
based routing (KBR) API abstractions [12] that allow more
application-specific functionalities to be built over these com-
mon basic KBR API abstractions, and OpenDHT1 (Open
publicly accessible DHT service) [13] that allow the unifica-
tion platform to provide developers with a basic DHT service
model that runs on a set of infrastructure hosts, to deploy
DHT-based overlay applications without the burden of main-
taining a DHT, and with ease of use to spur the deployment
of DHT-based applications. In contrast, unstructured P2P
overlay systems are ad-hoc in nature, and do not present the
possibilities of being unified under a common platform for
application development.

In later sections of this article we will describe the key fea-
tures of structured P2P and unstructured P2P overlay net-
works and their operation functionalities. After providing a
basic understanding of the various network overlay schemes in
these two classes, we proceed to evaluate these various over-

lays schemes in both classes and discuss its developments.
Then we attempt to use the following taxonomies to make
comparisons between the various discussed structured and
unstructured P2P overlay schemes:
•Decentralization — examine whether the overlay system

is distributed.
•Architecture — describe the overlay system architecture

with respect to its operation.
•Lookup protocol — the lookup query protocol adopted

by the overlay system.
•System parameters — the required system parameters

for the overlay system operation.
•Routing performance — the lookup routing protocol

performance in overlay routing.
•Routing state — the routing state and scalability of the

overlay system.
•Peers join and leave — describe the behavior of the

overlay system when churn and self-organization
occurred.

•Security — look into the security vulnerabilities of over-
lay systems.

•Reliability and fault resiliency — examine how robust the
overlay system is when subjected to faults.
Finally, we conclude with some thoughts on the relative

applicability of each class to some of the research problems
that arise in ad-hoc, location-based, and content delivery net-
works, as examples.

STRUCTURED P2P OVERLAY NETWORKS

In this category, the overlay network assigns keys to data
items and organizes its peers into a graph that maps each
data key to a peer. This structured graph enables efficient
discovery of data items using the given keys. However, in its
simple form, this class of systems does not support complex
queries and it is necessary to store a copy or a pointer to
each data object (or value) at the peer responsible for the
data object’s key. In this section, we survey and compare the
following structured P2P overlay networks: Content Address-
able Network (CAN) [5], Tapestry [7], Chord [6], Pastry [4],
Kademlia [14], and Viceroy [15].

CONTENT ADDRESSABLE NETWORK (CAN)

The Content Addressable Network (CAN) [5] is a distributed
decentralized P2P infrastructure that provides hash-table
functionality on an Internet-like scale. CAN is designed to be
scalable, fault-tolerant, and self-organizing. The architectural
design is a virtual multi-dimensional Cartesian coordinate
space on a multi-torus. This d-dimensional coordinate space is
completely logical. The entire coordinate space is dynamically
partitioned among all the peers (N number of peers) in the
system such that every peer possesses its individual, distinct
zone within the overall space. A CAN peer maintains a rout-
ing table that holds the IP address and virtual coordinate zone
of each of its neighbors in the coordinate space. A CAN mes-
sage includes the destination coordinates. Using the neighbor
coordinates, a peer routes a message toward its destination
using a simple greedy forwarding to the neighbor peer that is
closest to the destination coordinates. CAN has a routing per-
formance of O(d × N1/d) and its routing state is of 2 × d
bound. As shown in Fig. 3, which we adapted from the CAN
paper [5], the virtual coordinate space is used to store
{key,value} pairs as follows: to store a pair {K,V}, key K is
deterministically mapped onto a point P in the coordinate
space using a uniform hash function. The lookup protocol

n Figure 3. Example of 2-d space CAN before and after Peer Z
joins.
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retrieves an entry corresponding to key K, and any peer can
apply the same deterministic hash function to map K onto
point P and then retrieve the corresponding value V from the
point P. If the requesting peer or its immediate neighbors do
not own the point P, the request must be routed through the
CAN infrastructure until it reaches the peer where P lays. A
peer maintains the IP addresses of those peers that hold coor-
dinate zones adjoining its zone. This set of immediate neigh-
bors in the coordinate space serves as a coordinate routing
table that enables efficient routing between points in this
space.

A new peer that joins the system must have its own portion
of the coordinate space allocated. This can be achieved by
splitting an existing peer’s zone in half, retaining half for the
peer and allocating the other half to the new peer. CAN has
an associated DNS domain name that is resolved into the IP
address of one or more CAN bootstrap peers (which maintain
a partial list of CAN peers). For a new peer to join a CAN
network, the peer looks up in the DNS of a CAN domain
name to retrieve a bootstrap peer’s IP address, similar to the
bootstrap mechanism in [16]. The bootstrap peer supplies the
IP addresses of some randomly chosen peers in the system.
The new peer randomly chooses a point P and sends a JOIN
request destined for point P. Each CAN peer uses the CAN
routing mechanism to forward the message until it reaches the
peer in which zone P lies. The current peer in zone P then
splits its zone in half and assigns the other half to the new
peer. For example, in a 2-dimensional space, a zone would
first be split along the X dimension, then the Y, and the split-
ting continues. The {K,V} pairs from the half zone to be
handed over are also transferred to the new peer. After
obtaining its zone, the new peer learns of the IP addresses of
its neighbor set from the previous peer in point P, and adds to
that the previous peer itself.

When a peer leaves the CAN network, an immediate
takeover algorithm ensures that one of the failed peer’s neigh-
bors takes over the zone and starts a takeover timer. The peer
updates its neighbor set to eliminate those peers that are no
longer its neighbors. Every peer in the system then sends soft-
state updates to ensure that all of their neighbors will learn
about the change and update their own neighbor sets. The
number of neighbors a peer maintains depends only on the
dimensionality of the coordinate space (i.e., 2 × d) and it is
independent on the total number of peers in the system.

The Fig. 3 example illustrated a simple routing path from
peer X to point E and a new peer Z joining the CAN net-
work. For a d-dimensional space partitioned into n equal
zones, the average routing path length is (d/4) × (n1/d) hops
and individual peers maintain a list of 2 × d neighbors. Thus,
the growth of peers (or zones) can be achieved without
increasing per peer state while the average path length grows
as O(n1/d). Since there are many different paths between two
points in the space, when one or more of a peer’s neighbors
fail, this peer can still route along the next best available path.

Improvement of the CAN algorithm can be accomplished
by maintaining multiple, independent coordinate spaces, with
each peer in the system being assigned a different zone in
each coordinate space, called reality. For a CAN with r reali-
ties, a single peer is assigned r coordinate zones, one on each
reality available, and this peer holds r independent neighbor
sets. The contents of the hash table are replicated on every
reality, thus improving data availability. For further data avail-
ability improvement, CAN could use k different hash func-
tions to map a given key onto k points in the coordinate
space. This results in the replication of a single {key,value}
pair at k distinct peers in the system. A {key,value} pair is
then unavailable only when all the k replicas are simultane-

ously unavailable. Thus, queries for a particular hash table
entry could be forwarded to all k peers in parallel, thereby
reducing the average query latency, and reliability and fault
resiliency properties are enhanced.

CAN could be used in large-scale storage management sys-
tems such as the OceanStore [17], Farsite [18], and Publius
[19]. These systems require efficient insert and retrieval of
content in a large distributed storage network with a scalable
indexing mechanism. Another potential application for CANs
is in the construction of wide-area name resolution services
that decouple the naming scheme from the name resolution
process. This enables an arbitrary and location-independent
naming scheme.

CHORD

Chord [6] uses consistent hashing [20] to assign keys to its
peers. Consistent hashing is designed to let peers enter and
leave the network with minimal interruption. This decentral-
ized scheme tends to balance the load on the system, since
each peer receives roughly the same number of keys, and
there is little movement of keys when peers join and leave the
system. In a steady state, for a total of N peers in the system,
each peer maintains routing state information for about
O(logN) other peers. This may be efficient but performance
degrades gracefully when that information is out-of-date.

The consistent hash functions assign peers and data keys
an m-bit identifier using SHA-1 [21] as the base hash func-
tion. A peer’s identifier is chosen by hashing the peer’s IP
address, while a key identifier is produced by hashing the data
key. The length of the identifier m must be large enough to
make the probability of keys hashing to the same identifier
negligible. Identifiers are ordered on an identifier circle mod-
ulo 2m. Key k is assigned to the first peer whose identifier is
equal to or follows k in the identifier space. This peer is called
the successor peer of key k, denoted by successor(k). If identi-
fiers are represented as a circle of numbers from 0 to 2m – 1,
then successor(k) is the first peer clockwise from k. The iden-
tifier circle is called the Chord ring. To maintain consistent
hashing mapping when a peer n joins the network, certain
keys previously assigned to n’s successor now need to be reas-
signed to n. When peer n leaves the Chord system, all of its
assigned keys are reassigned to n’s successor. Therefore, peers
join and leave the system with (logN)2 performance. No other
changes of keys assignment to peers need to occur. In Fig. 4
(adapted from [6]), the Chord ring is depicted with m = 6.
This particular ring has 10 peers and stores five keys. The suc-
cessor of the identifier 10 is peer 14, so key 10 will be located
at NodeID 14. Similarly, if a peer were to join with identifier
26, it would store the key with identifier 24 from the peer with
identifier 32.

Each peer in the Chord ring needs to know how to contact
its current successor peer on the identifier circle. Lookup
queries involve the matching of key and NodeID. For a given
identifier could be passed around the circle via these succes-
sor pointers until they encounter a pair of peers that include
the desired identifier; the second peer in the pair is the peer
the query maps to. An example is presented in Fig. 4, whereby
peer 8 performs a lookup for key 54. Peer 8 invokes the find
successor operation for this key, which eventually returns the
successor of that key, i.e. peer 56. The query visits every peer
on the circle between peer 8 and peer 56. The response is
returned along the reverse of the path.

As m is the number of bits in the key/NodeID space, each
peer n maintains a routing table with up to m entries, called
the finger table. The ith entry in the table at peer n contains
the identity of the first peer s that succeeds n by at least 2 i –1
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on the identifier circle, i.e., s = successor(n + 2 i –1), where 
1 ≤ i ≤ m. Peer s is the ith finger of peer n (n × finger[i]). A
finger table entry includes both the Chord identifier and the
IP address (and port number) of the relevant peer. Figure 4
shows the finger table of peer 8, and the first finger entry for
this peer points to peer 14, as the latter is the first peer that
succeeds (8+20) mod 26 = 9. Similarly, the last finger of peer
8 points to peer 42, i.e., the first peer that succeeds (8 + 25)
mod 26 = 40. In this way, peers store information about only
a small number of other peers, and know more about peers
closely following it on the identifier circle than other peers.
Also, a peer’s finger table does not contain enough informa-
tion to directly determine the successor of an arbitrary key k.
For example, peer 8 cannot determine the successor of key 34
by itself, as the successor of this key (peer 38) is not present
in peer 8’s finger table.

When a peer joins the system, the successor pointers of
some peers need to be changed. It is important that the suc-
cessor pointers are up to date at any time because the correct-
ness of lookups is not guaranteed otherwise. The Chord
protocol uses a stabilization protocol [6] running periodically
in the background to update the successor pointers and the
entries in the finger table. The correctness of the Chord pro-
tocol relies on the fact that each peer is aware of its succes-
sors. When peers fail, it is possible that a peer does not know

its new successor, and that it has no chance to learn about it.
To avoid this situation, peers maintain a successor list of size
r, which contains the peer’s first r successors. When the suc-
cessor peer does not respond, the peer simply contacts the
next peer on its successor list. Assuming that peer failures
occur with a probability p, the probability that every peer on
the successor list will fail is p r . Increasing r makes the system
more robust. By tuning this parameter, any degree of robust-
ness with good reliability and fault resiliency may be achieved.

The following applications are examples of how Chord
could be used.

•Cooperative mirroring or cooperative file system (CFS)
[22], in which multiple providers of content cooperate to store
and serve each others’ data. Spreading the total load evenly
over all participant hosts lowers the total cost of the system,
since each participant needs to provide capacity only for the
average load, not for the peak load. There are two layers in
CFS. The DHash (Distributed Hash) layer performs block
fetches for the peer, distributes the blocks among the servers,
and maintains cached and replicated copies. The Chord layer
distributed lookup system is used to locate the servers respon-
sible for a block. 

•Chord-based DNS [23] provides a lookup service, with
host names as keys and IP addresses (and other host informa-
tion) as values. Chord could provide a DNS-like service by

hashing each host name to a key [20]. Chord-
based DNS would require no special servers,
while ordinary DNS systems rely on a set of spe-
cial root servers. DNS also requires manual
management of the routing information (DNS
records) that allows clients to navigate the name
server hierarchy. Chord automatically maintains
the correctness of the analogous routing infor-
mation. DNS only works well when host names
are hierarchically structured to reflect adminis-
trative boundaries. Chord imposes no naming
structure. DNS is specialized to the task of find-
ing named hosts or services, while Chord can
also be used to find data object values that are
not tied to particular machines.

TAPESTRY

Sharing similar properties with Pastry, Tapestry
[7] employs decentralized randomness to
achieve both load distribution and routing
locality. The difference between Pastry and
Tapestry is the handling of network locality and
data object replication, and this difference will
be more apparent when described in the sec-
tion on Pasty. Tapestry’s architecture uses a
variant of the Plaxton et al. [1] distributed
search technique, with additional mechanisms
to provide availability, scalability, and adapta-
tion in the presence of failures and attacks.
Plaxton et al. propose a distributed data struc-
ture, known as the Plaxton mesh, optimized to
support a network overlay for locating named
data objects that are connected to one root
peer. On the other hand, Tapestry uses multi-
ple roots for each data object to avoid a single
point of failure. In the Plaxton mesh, peers can
take on the roles of servers (where data objects
are stored), routers (forward messages), and
clients (entity of requests). It uses local routing
maps at each peer to incrementally route over-
lay messages to the destination ID digit by

n Figure 4. Chord ring with identifier circle consisting of ten peers and five data
keys. It shows the path followed by a query originated at Peer 8 for the lookup
of key 54. Finger table entries for Peer 8.
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digit, e.g., * * * 7 ⇒ * * 97 ⇒ *297 ⇒ 3297, where * is the
wildcard, similar to the longest prefix routing in the CIDR
IP address allocation architecture [24]. The resolution of
digits from right to left or left to right is arbitrary. A peer’s
local routing map has multiple levels, where each of them
represents a match of the suffix with a digit position in the
ID space. The nth peer that a message reaches shares a suf-
fix of at least length n with the destination ID. To locate the
next router, the (n + 1)th level map is examined to locate
the entry matching the value of the next digit in the destina-
tion ID. This routing method guarantees that any existing
unique peer in the system can be located within at most
logBN logical hops, in a system with N peers using NodeIDs
of base B. Since the peer’s local routing map assumes that
the preceding digits all match the current peer’s suffix, the
peer needs only to keep a small constant size (B) entry at
each route level, yielding a routing map of fixed constant
size: (entries/map) × no. of maps = B × logBN.

The lookup and routing mechanisms of Tapestry are based
on matching the suffix in NodeID as described above. Routing
maps are organized into routing levels, where each level con-
tains entries that point to a set of peers closest in distance
that matches the suffix for that level. Also, each peer holds a
list of pointers to peers referred to as neighbors. Tapestry
stores the locations of all data object replicas to increase
semantic flexibility and allow the application level to choose
from a set of data object replicas based on some selection cri-
teria, such as date. Each data object may include an optional
application-specific metric in addition to a distance metric.
For example, the OceanStore [17] global storage architecture
finds the closest cached document replica that satisfies the
closest distance metric. These queries deviate from the simple
find first semantics, and Tapestry will route the message to the
closest k distinct data objects.

Tapestry handles the problem of a single point of failure
due to a single data object’s root peer by assigning multiple
roots to each object. Tapestry makes use of surrogate routing
to select root peers incrementally during the publishing pro-
cess to insert location information into Tapestry. Surrogate
routing provides a technique by which any identifier can be
uniquely mapped to an existing peer in the network. A data
object’s root or surrogate peer is chosen as the peer that
matches the data object’s ID, X. This is unlikely to happen,
given the sparse nature of the NodeID space. Nevertheless,
Tapestry assumes peer X exists by attempting to route a mes-
sage to it. A route to a non-existent identifier will encounter
empty neighbor entries at various positions along the way.
The goal is to select an existing link that can act as an alterna-
tive to the desired link; i.e. the one associated with a digit X.
Routing terminates when a map is reached where the only
non-empty routing entry belongs to the current peer. That
peer is then designated as the surrogate root for the data
object. While surrogate routing may take additional hops to
reach a root if compared with the Plaxton algorithm, the addi-
tional number of hops is small. Thus, surrogate routing in
Tapestry has minimal routing overhead relative to the static
global Plaxton algorithm.

Tapestry addresses the issue of fault adaptation and main-
tains cached content for fault recovery by relying on TCP
timeouts and UDP periodic heartbeat packets to detect link,
server failures during normal operations, and rerouting
through its neighbors. During fault operation each entry in
the neighbor map maintains two backup neighbors in addition
to the closest/primary neighbor. On a testbed of 100 machines
with 1000 peer simulations, the results in [7] show the good
routing rates and maintenance bandwidths during instanta-
neous failures and continuing churn.

A variety of different applications have been designed and
implemented on Tapestry. Tapestry is self-organizing, fault
tolerant, resilient under load, and is a fundamental compo-
nent of the OceanStore system [17, 25]. OceanStore is a glob-
al-scale, highly available storage utility deployed on the
PlanetLab [26] testbed. OceanStore servers use Tapestry to
disseminate encoded file blocks efficiently, and clients can
quickly locate and retrieve nearby file blocks by their ID,
despite server and network failures. Other Tapestry applica-
tions include the Bayeux [27], an efficient self organizing
application-level multicast system, and SpamWatch [28], a
decentralized spam-filtering system that uses a similarity
search engine implemented on Tapestry.

PASTRY

Pastry [4], like Tapestry, makes use of Plaxton-like prefix rout-
ing to build a self-organizing decentralized overlay network,
where each peer routes client requests and interacts with local
instances of one or more applications. Each peer in Pastry is
assigned a 128-bit peer identifier (NodeID). The NodeID is
used to give a peer’s position in a circular NodeID space,
which ranges from 0 to 2128 – 1. The NodeID is assigned ran-
domly when a peer joins the system, and it is assumed to be
generated such that the resulting set of NodeIDs is uniformly
distributed in the 128-bit space. For a network of N peers, Pas-
try routes to the numerically closest peer to a given key in less
than logBN steps under normal operation (where B = 2b is a
configuration parameter with typical value of b = 4). The
NodeIDs and keys are considered a sequence of digits with
base B. Pastry routes messages to the peer whose NodeID is
numerically closest to the given key. A peer normally forwards
the message to a peer whose NodeIDs share with the key a
prefix that is at least one digit (or b bits) longer than the prefix
that the key shares with the current peer NodeID.

As shown in Fig. 5, each Pastry peer maintains a routing
table, a neighborhood set, and a leaf set. A peer routing table
is designed with logBN rows, where each row holds B – 1 num-
ber of entries. The B – 1 number of entries at row n of the
routing table each refer to a peer whose NodeID shares the
current peer’s NodeID in the first n digits, but whose (n+1)th
digit has one of the B – 1 possible values other than the
(n+1)th digit in the current peer’s NodeID. Each entry in the
routing table contains the IP address of peers whose NodeIDs
have the appropriate prefix, and it is chosen according to a
close proximity metric. The value of b could be chosen with a
tradeoff between the size of the populated portion of the rout-
ing table [approximately (logBN) × (B – 1) entries] and maxi-
mum number of hops required to route between any pair of
peers (logBN). The neighborhood set, M, contains the NodeIDs
and IP addresses of the M peers that are closest in proximity
to the local peer. The network proximity that Pastry uses is
based on a scalar proximity metric such as the IP routing geo-
graphic distance. The leaf set, L, is the set of peers with L/2
numerically closest larger NodeIDs and L/2 peers with
numerically smaller NodeIDs, in relation to the current peer’s
NodeID. Typical values for L and M are B or 2 × B. Even
with concurrent peer failure, eventual delivery is guaranteed
with good reliability and fault resiliency, unless L/2 peers
with adjacent NodeIDs fail simultaneously (L is a configura-
tion parameter with a typical value of 16 or 32).

When a new peer (NodeID is X) joins the network, it
needs to initialize its routing table and inform other peers of
its presence. This new peer needs to know the address of a
contact or bootstrap peer in the network. A small list of con-
tact peers, based on a proximity metric (e.g., the RTT to each
peer) to provide better performance, could be provided as a
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service in the network, and the new peer could select at ran-
dom one of the peers for contact. As a result, this new peer
will know initially about a closest Pastry peer A. Peer X then
asks A to route a join message with the key equal to X. Pastry
routes the join message to the existing peer Z whose NodeID
is numerically closest to X. Upon receiving the join request,
peers A, Z and all peers encountered on the path from A to Z
send their routing tables to X. Finally, X informs any peers
that need to be aware of its arrival. This ensures that X initial-
izes its routing table with appropriate information and the
routing tables in all other affected peers are updated based on
the information received. As peer A is topologically close to
the new peer X, A’s neighborhood set is used to initialize X’s
neighborhood set.

A Pastry peer is considered to have left the overlay net-
work when its immediate neighbors in the NodeID space can
no longer communicate with the peer. To replace this failed
peer in the leaf set of its neighbors, its neighbors in the
NodeID space contact the live peer with the largest index on

the side of the failed peer, and request its leaf table. Let the
received leaf set be L′, which overlaps the current peer’s leaf
set L, and it contains peers with nearby NodeIDs not residing
in L. The appropriate peer is chosen to insert into L, verifying
that the peer is actually still alive by contacting it. The neigh-
borhood set is not used in the routing of messages, but it is
still kept fresh because this set plays an important role in
exchanging information about nearby peers. Therefore, a peer
contacts each member of the neighborhood set periodically to
test if it is still alive. If the peer is not responding, the contact-
ing peer asks other members for their neighborhood sets and
checks for the closest proximity of each of the newly contact-
ed peers and updates its own neighborhood set.

Pastry is being used in the implementation of a scalable
application-level multicast infrastructure called Scribe [29, 30].
Instead of relying on a multicast infrastructure in the network
that is not widely available, the participating peers route and
distribute multicast messages using only unicast network ser-
vices. It supports a large number of groups with large num-

n Figure 5. Pastry peer's routing table, leaf set, and neighbor set. An example of routing path for a pastry peer.

Routing from peer 37A0F1 with key B57B2D

37A0F1

B24EA3

B5324F
B573AB

B573D6B57B2D

B581F1

Live peers
in Pastry

Route
(B57B2D)

Leaf set
(smaller)

37A001 37A011 37A022 37A033

37A044 37A055 37A066 37A077

Leaf set
(larger)

37A0F2 37A0F4 37A0F6 37A0F8

37A0FA 37A0FB 37A0FC 37A0FE

Neighborhood
set

1A223B 1B3467 245AD0 2670AB

3612AB 37890A 390AF0 3912CD

46710A 477810 4881AB 490CDE

279DE0 290A0B 510A0C 5213EA

11345B 122167 16228A 19902D

221145 267221 28989C 199ABC

NodeID 37A0F1

0x 1x 2x 3x 4x ... Dx Ex Fx

30x 31x 32x ... 37x 38x ... 3Ex 3Fx

370x 371x 372x ... 37Ax 37Bx ... 37Ex 37Fx

37A0x 37A1x 37A2x ... 37ABx 37ACx 37ADx 37AEx 37AFx

Routing table of a Pastry peer with NodeID 37A0x,
b=4, digits are in hexadecimal, x is an arbitrary suffix

Example: routing state of a Pastry peer
with NodeID 37A0F1, b=4, L=16, M=32
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bers of members per group. Scribe is built on top of Pastry,
which is used to create and manage groups and to build effi-
cient multicast trees for dissemination of messages to each
group. Scribe builds a multicast tree formed by joining Pastry
routes from each group member to a rendezvous point associ-
ated with a group. Membership maintenance and message dis-
semination in Scribe leverages the robustness, self
organization, locality, and reliability properties of Pastry.

SplitStream [31] allows a cooperative multicasting environ-
ment where peers contribute resources in exchange for using
the service. The key idea is to split the content into k stripes
and to multicast each stripe using a separate tree. Peers join as
many trees as there are stripes they wish to receive and they
specify an upper bound on the number of stripes that they are
willing to forward. The challenge is to construct this forest of
multicast trees such that an interior peer in one tree is a leaf
peer in all the remaining trees and the bandwidth constraints
specified by the peers are satisfied. This ensures that the for-
warding load can be spread across all participating peers. For
example, if all peers wish to receive k stripes and they are will-
ing to forward k stripes, SplitStream will construct a forest such
that the forwarding load is evenly balanced across all peers
while achieving low delay and link stress across the network.

Squirrel [32] uses Pastry as its data object location service,
to identify and route to peers that cache copies of a requested
data object. It facilitates mutual sharing of Web data objects
among client peers, and enables the peers to export their local
caches to other peers in the network, thus creating a large
shared virtual Web cache. Each peer then performs both Web
browsing and Web caching, without the need for expensive
and dedicated hardware for centralized Web caching. Squirrel
faces a new challenge whereby peers in a decentralized cache
incur the overhead of having to serve each other requests, and
this extra load must be kept low.

PAST [33, 34] is a large scale P2P persistent storage utility
that is based on Pastry. The PAST system is composed of peers
connected to the Internet such that each peer is capable of ini-
tiating and routing client requests to insert or retrieve files.
Peers may also contribute storage to the system. A storage sys-
tem like PAST is attractive because it exploits the multitude
and diversity of peers in the Internet to achieve strong persis-
tence and high availability. This eradicates the need for physical
transport of storage media to protect lookup and archival data,
and the need for explicit mirroring to ensure high availability
and throughput for shared data. A global storage utility also
facilitates the sharing of storage and bandwidth, thus permitting
a group of peers to jointly store or publish content that would
exceed the capacity or bandwidth of any individual peer.

Pastiche [35] is a simple and inexpensive backup system
that exploits excess disk capacity to perform P2P backup with
no administrative costs. The cost and inconvenience of backup
are unavoidable and often prohibitive. Small-scale solutions
require significant administrative efforts. Large-scale solutions
require aggregation of substantial demand to justify the capi-
tal costs of a large, centralized repository. Pastiche builds on
three architectures: Pastry, which provides the scalable P2P
network with self-administered routing and peer location;
content-based indexing [36, 37], which provides flexible dis-
covery of redundant data for similar files; and convergent
encryption [18], which allows hosts to use the same encrypted
representation for common data without sharing keys.

KADEMLIA

The Kademlia [14] P2P decentralized overlay network takes the
basic approach of assigning each peer a NodeID in the 160-bit
key space, and {key,value} pairs are stored on peers with IDs

close to the key. A NodeID-based routing algorithm will be
used to locate peers near a destination key. One of the key
architectures of Kademlia is the use of a novel XOR metric for
distance between points in the key space. XOR is symmetric
and it allows peers to receive lookup queries from precisely the
same distribution of peers contained in their routing tables.
Kademlia can send a query to any peer within an interval,
allowing it to select routes based on latency or send parallel
asynchronous queries. It uses a single routing algorithm
throughout the process to locate peers near a particular ID.

Every message being transmitted by a peer includes its peer
ID, permitting the recipient to record the sender peer’s exis-
tence. Data keys are also 160-bit identifiers. To locate {key,value}
pairs, Kademlia relies on the notion of distance between two
identifiers. Given two 160-bit identifiers, a and b, it defines the
distance between them as their bitwise exclusive OR (XOR,
interpreted as d(a, b) = a ⊕ b = d(b, a) for all a, b), and this is a
non-Euclidean metric. Thus, d(a, b) = 0, d(a, b) > 0(if a ≠ b),
and for all a, b: d(a, b) = d(b, a). XOR also offers the triangle
inequality property: d(a, b) + d(b, c) ≥ d(a, c), since d(a, c) =
d(a, b) ⊕ d(b, c) and (a + b ≥ a ⊕ b) for all a, b = 0. Similar to
Chord’s clockwise circle metric, XOR is unidirectional. For any
given point x and distance d > 0, there is exactly one point y such
that d(x, y) = d. The unidirectional approach makes sure that all
lookups for the same key converge along the same path, regard-
less of the originating peer. Hence, caching {key,value} pairs
along the lookup path alleviates hot spots.

The peer in the network stores a list of {IP address,UDP
port,NodeID} triples for peers of distance between 2i and 2i+1

from itself. These lists are called k-buckets. Each k-bucket is
kept sorted by last time seen, i.e. least recently accessed peer
at the head, most-recently accessed at the tail. The Kademlia
routing protocol consists of the following steps: 
• PING probes a peer to check if it is active.
• STORE instructs a peer to store a {key,value} pair for

later retrieval.
• FIND_NODE takes a 160-bit ID, and returns {IP

address,UDP port,NodeID} triples for the k peers it
knows that are closest to the target ID.

• FIND_VALUE is similar to FIND_NODE: it returns {IP
address,UDP port,NodeID} triples, except in the case
when a peer receives a STORE for the key, in which case
it just returns the stored value.
Importantly, Kademlia’s peer must locate the k closest

peers to some given NodeID. This lookup initiator starts by
picking X peers from its closest non-empty k-bucket, and then
sends parallel asynchronous FIND_NODE to the X peers it
has chosen. If FIND_NODE fails to return a peer that is any
closer than the closest peers already seen, the initiator resends
the FIND_NODE to all of the k closest peers it has not
already queried. It can route for lower latency because it has
the flexibility to choose any one of k peers to forward a
request. To find a {key,value} pair, a peer starts by perform-
ing a FIND_VALUE lookup to find the k peers with IDs clos-
est to the key. To join the network, a peer n must have contact
with an already participating peer m. Peer n inserts peer m
into the appropriate k-bucket, and then performs a peer
lookup for its own peer ID. Peer n refreshes all k-buckets far-
ther away than its closest neighbor, and during this refresh,
peer n populates its own k-buckets and inserts itself into other
peers’ k-buckets, if needed.

VICEROY

The Viceroy [15] P2P decentralized overlay network is
designed to handle the discovery and location of data and
resources in a dynamic butterfly fashion. Viceroy employs
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consistent hashing [20] to distribute data so that it is balanced
across the set of servers and resilient to servers joining and
leaving the network. It utilizes the DHT to manage the distri-
bution of data among a changing set of servers and allowing
peers to contact any server in the network to locate any stored
resource by name. In addition to this, Viceroy maintains an
architecture that is an approximation to a butterfly network
[38], as shown in Fig. 6 (adapted from the diagram in [15]),
and uses links between successors and predecessors — ideas
that were based on Kleingberg [39] and Barriere et al. [40] —
on the ring (a key is mapped to its successor on the ring) for
short distances. Its diameter of the overlay is better than CAN
and its degree is better than Chord, Tapestry, and Pastry.

When N peers are operational, one of the logN levels is
selected with near equal probability. Level l peer’s two edges
are connected to peers at level l + 1. A down-right edge is
added to a long-range contact at level l + 1 at a distance
about 1/(2l) away, and a down-left edge is added at a close
distance on the ring to the level l +1. The up edge to a nearby
peer at level l – 1 is included if l > 1. Then, level-ring links
are added to the next and previous peers of the same level l.
Routing is done by climbing using up connections to a level 
l – 1 peer, then proceeds down the levels of the tree using the
down links, and moving from level l to level l + 1. It follows
either the edge to the nearby down link or the further down
link, depending on distance > 1/(2l). This recursively contin-
ues until a peer is reached with no down links, and it is in the
vicinity of the target peer. So a vicinity lookup is performed
using the ring and level-ring links. For reliability and fault
resiliency, when a peer leaves the overlay network, it hands
over its key pairs to a successor from the ring pointers and
notifies other peers to find a replacement. It is formalized and
proved [15] that the routing process requires only O(logN),
where N is the number of peers in the network.

DISCUSSION OF
STRUCTURED P2P OVERLAY NETWORK

The algorithm of Plaxton was originally devised to route Web
queries to nearby caches, and this influenced the design of
Pastry, Tapestry, and Chord. The method of Plaxton has loga-
rithmic expected join/leave complexity. Plaxton ensures that
queries never travel further in network distance than the peer
where the key is stored. However, Plaxton has several disad-

vantages: it requires global knowledge to con-
struct the overlay; an object’s root peer is the
single point of failure; no insertion or deletion
of peers; and no avoidance of hotspot conges-
tion. Pastry and Tapestry schemes relied on
DHT to provide the substrate for semantic-free
and data-centric references, through the assign-
ment of a semantic-free NodeID, such as a 160-
bit key, and performed efficient request routing
between lookup peers using an efficient and
dynamic routing infrastructure, whereby peers
leave and join. Overlays that perform query
routing in DHT-based systems have strong theo-
retical foundations, guaranteeing that a key can
be found if it exists, and they do not capture the
relationships between the object name and its
content. However, DHT-based systems have a
few problems in terms of data object lookup
latency:

•For each overlay hop, peers route a message
to the next intermediate peer that can be located
very far away with regard to physical topology of

the underlying IP network. This can result in high network
delay and unnecessary long-distance network traffic, from a
deterministic short overlay path of O(logN), where N is the
number of peers.

•DHT-based systems assume that all peers equally partici-
pate in hosting published data objects or their location infor-
mation. This would lead to a bottleneck at low-capacity peers.

Pastry and Tapestry routing algorithms are a randomized
approximation of a hypercube, and routing toward an object is
done by matching longer address suffixes until either the
object’s root peer or another peer with a nearby copy is found.
Rhea et al. [41] make use of FreePastry implementation to
discover that most lookups fail to complete when there is
excessive churn. They claimed that short-lived peers leave the
overlay with lookups that have not yet timed out. They out-
lined design issues pertaining to DHT-based performance
under churn: lookup timeouts; reactive versus periodic recov-
ery of peers; and the choice of nearby neighbors. Since the
reactive recovery will increase traffic to congested links, they
make use of periodic recovery; and for lookup they suggested
an exponential weighted moving average of each neighbor’s
response time instead of alternative fixed timeout. They dis-
covered that selection of nearby neighbors required global
sampling, which is more effective than simply sampling neigh-
bor’s neighbors. However, Castro et al. [42] use the MSPastry
implementation to show that it can cope with high churn rates
by achieving shorter routing paths and a lesser maintenance
overhead. Pastry exploits network locality to reduce routing
delays by measuring the delay round-trip-time (RTT) to a
small number of peers when building the routing tables. For
each routing table entry, it chooses one of the closest peers in
the network topology whose NodeID satisfies the constraints
for that entry. The average IP delay of each Pastry hop
increases exponentially until it reaches the average delay
between two peers in the network. Chord’s routing protocol is
similar to Pastry’s location algorithm in PAST. However, Pas-
try is a prefix-based routing protocol and differs in other
details from Chord.

Chord maps keys and peers to an identifier ring and guar-
antees that queries make a logarithmic number of hops and
that keys are well balanced. It uses consistent hashing to mini-
mize disruption of keys when peers leave and join the overlay
network. Consistent hashing ensures that the total number of
caches responsible for a particular object is limited, and when
these caches change, the minimum number of object refer-

n Figure 6. A simplified Viceroy network. For simplicity, the up link, ring, and
level-ring links are not shown.
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ences will move to maintain load balancing. Since the Chord
lookup service presents a solution where each peer maintains
a logarithmic number of long-range links, it gives a logarith-
mic join/leave update. In Chord, the network is maintained
appropriately by a background maintenance process, i.e. a
periodic stabilization procedure that updates predecessor and
successor pointers to cater to newly joined peers. Liben-Now-
ell et al. [43] ask the question of how often the stabilization
procedure needs to run to determine the success of Chord’s
lookups and if determining the optimum involves the mea-
surement of peers’ behavior. Stoica et al. [6] demonstrate the
advantage of recursive lookups over iterative lookups, but
future work is proposed to improve resiliency to network par-
titions using a small set of known peers, and to reduce the
amount of messages in lookups by increasing the size of each
step around the ring with a larger finger in each peer. Alima
et al. [44] propose a correction-on-use mechanism in their Dis-
tributed K-ary Search (DKS), which is similar to Chord, to
reduce the communication costs incurred by Chord’s stabiliza-
tion procedure. The mechanism makes corrections to the
expired routing entries by piggybacking lookups and inser-
tions.

The work on CAN has a constant degree network for rout-
ing lookup requests. It organizes the overlay peers into a d-
dimensional Cartesian coordinate space, with each peer taking
ownership of a specific hyper-rectangular shape in the space.
The key motivation of the CAN design is based on the argu-
ment that Plaxton-based schemes would not perform well
under churn, given that peer departures and arrivals would
affect a logarithmic number of peers. It maintains a routing
table with its adjacent immediate neighbors. Peers joining the
CAN cause the peer owning the region of space to split, giv-
ing half to the new peer and retaining half. Peers leaving the
CAN will pass its NodeID, neighbors’ NodeID, IP addresses
and its {key,value} pairs to a takeover peer. CAN has a num-
ber of tunable parameters to improve routing performance:
dimensionality of the hypercube; network-aware routing by
choosing the neighbor closest to the destination in CAN
space; multiple peers in a zone, allowing CAN to deliver mes-
sages to anyone of the peers in the zone in an anycast man-
ner; uniform partitioning, made possible by comparing the
volume of a region with the volumes of neighboring regions
when a peer joins; and landmark-based placement which caus-
es peers, at join time, to probe a set of well known landmark
hosts, estimating each of their network distances. There are
open research questions on CAN’s resiliency, load balancing,
locality, and latency/hopcount costs.

Kademlia’s XOR topology-based routing resembles very
much the first phase in the routing algorithms of Pastry,
Tapestry, and Plaxton. For these three algorithms, there is a
need for an additional algorithmic structure for discovering
the target peer within the peers that share the same prefix but
differ in the next b-bit digit. It was argued in [14] that Pastry
and Tapestry algorithms require secondary routing tables of
size O(2b) in addition to the main tables of size O(2blog2bN),
which increases the cost of bootstrapping and maintenance.
Kademlia resolves in their distinctive ways through the use of
XOR metrics for the distance between 160-bit NodeIDs, and
each peer maintains a list of contact peers, of which longer-
lived peers are given preference on this list. Kademlia can
easily be optimized with a base other than 2, by configuring
the bucket table so that it approaches the target b bits per
hop. This requiress having one bucket for each range of peers
at a distance [j × (2160–(i+1)b), (j + 1) × (2160–(i+1)b)], for each 
0 < j < 2b and 0 ≤ i < 160/b. This expects no more than 
(2b – 1) × (log2bN) buckets.

The Viceroy overlay network (butterfly) presents an effi-

cient network construction proved formally in [15], and main-
tains constant degree networks in a dynamic environment,
similar to CAN. Viceroy has logarithmic diameter, similar to
Chord, Pastry, and Tapestry. Viceroy’s diameter is proven to
be better than CAN and its degree is better than Chord, Pas-
try, and Tapestry. Its routing is achieved in O(logN) hops
(where N is the number of peers) and with nearly optimal
congestion. Peers joining and leaving the system induce
O(logN) hops and require only O(1) peers to change their
states. Li et al. [45] suggest in their paper that limited degree
may increase the risk of network partition or limitations in the
use of local neighbors. However, its advantage is the constant-
degree overlay properties. Kaashoek et al. [46] highlight its
fault-tolerant blind spots and its complexity.

Further work was done by Viceroy’s authors with the pro-
posal of a two-tier, locality-aware DHT [47] which gives lower
degree properties in each lower-tier peer, and the bounded-
degree P2P overlay using de Bruijn graph [48]. Since de Brui-
jn graphs give very short average routing distances and high
resilience to peer failure, they are well suited for Structured
P2P overlay networks. The P2P overlays discussed above are
greedy, and for a given degree, the algorithms are suboptimal
because the routing distance is longer. There are increasing
improvements to de Bruijn P2P overlay proposals [46, 49–52].
The de Bruijn graph of degree k (k can be varied) could
achieve an asymptotically optimum diameter (maximum hop-
counts between any two peers in the graph) of logkN, where N
is the total number of peers in the system. Given O(logN)
neighbors in each peer, the de Bruijn graphs’ hop count is
O(logN/loglogN). A good comparison study has been done by
Loguinov et al. [50] where they use examples of Chord, CAN,
and de Bruijn to study routing performance and resilience of
P2P overlay networks, including graph expansion and cluster-
ing properties. They confirmed that de Bruijn graphs for a
given degree k offer the best diameter and average distance
between all pairs of peers (this determines the expected
response time in number of hops), optimal resilience (k-peer
connectivity), large bisection width (the bisection width of a
graph provides tight upper bounds on the achievable capacity
of the graph), and good node (peer) expansion, which guaran-
tees little overlap between parallel paths to any destination
peer. (If there is a peer failure, very few alternative paths to a
destination peer are affected.)

P2P DHT-based overlay systems are susceptible to security
breaches from malicious peers’ attacks. One simple attack on
a DHT-based overlay system is when the malicious peer
returns wrong data objects to the lookup queries. The authen-
ticity of the data objects can be handled by using cryptograph-
ic techniques through some cost-effective public keys and/or
content hashes to securely link together different pieces of
data objects. Such techniques can neither prevent undesirable
data objects from polluting the search results, nor prevent
denial of attacks. Malicious peers may still be able to corrupt,
deny access, or respond to lookup queries of replicas of a data
object, and impersonate so that replicas may be stored on ille-
gitimate peers. Sit et al. [53] provide a very clear description
of security considerations that involve the adversaries that are
peers in the DHT overlay lookup system that do not follow
the protocol correctly: malicious peers are able to eavesdrop
the communication between other nodes; malicious peers can
only receive data objects addressed to its IP address, and thus,
the IP address can be a weak form of peer identity; and mali-
cious peers can collude together, giving believable false infor-
mation. They presented a taxonomy of possible attacks
involving routing deficiencies due to corrupted lookup routing
and updates; vulnerability to partitioning and virtualization
into incorrect networks when new peers join and contact mali-
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cious peers; lookup and storage attacks; inconsistent behavior
of peers; denial of service attacks preventing access by over-
loading the victim’s network connection; and unsolicited
responses to a lookup query. Defenses design principles that
can be classified as defining verifiable system invariants for
lookup queries, NodeID assignment, peer selection in routing,
cross checking using random queries, and avoiding single
points of responsibility.

Castro et al. [54] relate the problems of secure routing for
Structured P2P overlay networks in terms of the possibilities
that a small number of peers could compromise the overlay
system if peers are malicious and conspire with each other
(this is also termed an Eclipse attack [55]). They presented a
design and analysis of techniques for secure peer joining,
routing table maintenance, and robust message forwarding in
the presence of malicious peers in Structured P2P overlays.
The technique can tolerate up to 25 percent of malicious
peers while providing good performance when the number of
compromised peers is small. However, this defense restricts
the flexibility necessary to implement optimizations such as
proximity neighbor selection, and only works in Structured
P2P overlay networks. So, Singh et al. [55] propose a defense
that prevents Eclipse attacks for both Structured and Unstruc-
tured P2P overlay networks, by bounding the degree of over-
lay peers, i.e., the in-degree of overlay peers is likely to be
higher than the average in-degree of legitimate peers, and
legitimate peers choose their neighbors from a subset of over-
lay peers whose in-degree is below a threshold. Having done
the in-degree bounding, it is still possible for an attacker to
consume the in-degree of legitimate peers and prevent other
legitimate peers from referencing to them. Therefore, bound-
ing the out-degree is necessary so that legitimate peers choose
neighbors from the subset of overlay peers whose in-degree
and out-degree are below some threshold. An auditing scheme
is also introduced to prevent mis-stating incorrect information
of the in-degree and out-degree.

Another good survey on security issues in P2P overlays is
from Wallach [56], which describes secured routing primitives:
assigning NodeIDs, maintaining routing tables, and forward-
ing of messages securely. He also suggested looking at dis-
tributed auditing, the sharing of disk space resources in P2P
overlay networks as a barter economy, and the mechanism to
implement such an economy. The work on BarterRoam [57]
sheds light on a formal computational approach that is appli-
cable to P2P overlay systems toward exchanging resources so
that higher level functionality, such as incentive-compatible
economic mechanisms, can be layered at the higher layers.
Formal game theoretical approaches and models [58–60]
could be constructed to analyze the equilibrium of user strate-
gies to implement incentives for cooperation. The ability to
overcome free-rider problems in P2P overlay networks will
definitely improve the system’s reliability and its value.

In a Sybil attack, described by Douceur [61], there are a
large number of potentially malicious peers in the system with
no central authority to certify peers’ identities. Thus, it
becomes very difficult to trust the claimed identity. Dingledine
et al. [62] propose puzzle schemes, including the use of micro-
cash, which allow peers to build up reputations. Although this
proposal provides a degree of accountability, this still allows a
resourceful attacker to launch attacks. Many P2P computa-
tional models of trust and reputation systems have emerged to
assess trustworthiness behavior through feedback and interac-
tion mechanisms. The basic assumption of these computation-
al trust and reputation models is that the peers engage in
bilateral interactions and evaluations performed on a globally
agreed scale. However, most such trust and reputation sys-
tems suffer from two problems, as highlighted by Despotovic

et al. [63]: extensive implementation overhead and vague
trust-related model semantics. The causes lie in the aggrega-
tion of the feedback about all peers in the overlay network in
order to assess the trustworthiness of a single peer, and also
the anti-intuitive feedback aggregation strategies resulting in
outputs that are difficult to interpret. They proposed a simple
probabilistic estimation technique with maximum likelihood
estimation sufficient to reduce these problems when the feed-
back aggregation strategy is employed.

Finally, since each of these basic Structured P2P DHT-
based systems defines different methods in the higher-level
DHT abstractions to map keys to peers and other Structured
P2P application-specific systems such as cooperative storage,
content distribution, and messaging, there have been recent
efforts [12] to define basic common API abstractions for the
common services they provide, which they called key-based
routing API (KBR), at the lower tiers of the abstractions. At
the higher tiers, more abstractions can be built upon this basic
KBR. In addition to DHT abstraction, which provides the
same functionality as the hash table in Structured P2P DHT-
based systems by mapping between keys and objects, the
group anycast and multicast (CAST) (which provides scalable
group communication and coordination) and decentralized
object location and routing (DOLR) (which provides a decen-
tralized directory service) are also defined. However, Karp et
al. [13] point out that the above mentioned bundled library
model, in which the applications read the local DHT state and
receive upcalls from the DHT, requires the codes for the same
set of applications to be available at all DHT hosts. This pre-
vents the sharing of a single DHT deployment by multiple
applications and generates maintenance traffic from running
the DHT on its underlying infrastructure. Thus, they proposed
OpenDHT with ReDiR, a distributed rendezvous service
model that requires only a put()/get() interface and shares a
common DHT routing platform. The authors argued that this
open DHT service will spur more development of DHT-based
applications without the burden of deploying and maintaining
a DHT.

Table 1 summarizes the characteristics of Structured P2P
overlay networks that have been discussed earlier.

UNSTRUCTURED P2P OVERLAY NETWORKS

In this category, the overlay networks organize peers in a ran-
dom graph in a flat or hierarchical manner (e.g., Super-Peers
layer) and use flooding or random walks or expanding-ring
Time-To-Live (TTL) search, etc. on the graph to query con-
tent stored by overlay peers. Each peer visited will evaluate
the query locally on its own content, and will support complex
queries. This is inefficient because queries for content that are
not widely replicated must be sent to a large fraction of peers,
and there is no coupling between topology and data items’
location. In this section, we will survey and compare some of
the more seminal Unstructured P2P overlay networks: Freenet
[64], Gnutella [9], FastTrack [65]/KaZaA [66], BitTorrent
[67], and Overnet/eDonkey2000 [68, 69].

FREENET

Freenet is an adaptive P2P network of peers that make
queries to store and retrieve data items, which are identified
by location-independent keys. This is an example of loosely
Structured decentralized P2P networks with the placement of
files based on anonymity. Each peer maintains a dynamic
routing table, which contains addresses of other peers and the
data keys that they are holding. The key features of Freenet
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are the ability to maintain locally a set of files in accordance
with the maximum disk space allocated by the network opera-
tor, and to provide security mechanisms against malicious
peers. The basic model is that requests for keys are passed
along from peer to peer through a chain of proxy requests in
which each peer makes a local decision about the location to
send the request next, similar to Internet Protocol (IP) rout-
ing. Freenet also enables users to share unused disk space,
thus allowing a logical extension to their own local storage
devices.

The basic architecture consists of data items being identi-
fied by binary file keys obtained by applying the 160-bit 
SHA-1 hash function [70]. The simplest type of file key is the
Keyword-Signed Key (KSK), which is derived from a short

descriptive text string chosen by the user, e.g., /music/Brit-
ney.Spears. The descriptive text string is used as the input to
deterministically generate a public/private key pair, and the
public half is then hashed to yield the data file key. The pri-
vate half of the asymmetric key pair is used to sign the data
file, thus providing a minimal integrity check that a retrieved
data file matches its data file key. The data file is also encrypt-
ed using the descriptive string itself as a key, so as to perform
an explicit lookup protocol to access the contents of their
data-stores.

However, nothing prevents two users from independently
choosing the same descriptive string for different files. These
problems are addressed by the Signed-Subspace Key (SSK),
which enables personal namespaces. The public namespace key

n Table 1. A comparison of various structured P2P overlay network schemes.

Algorithm
taxonomy

Structured P2P Overlay Network Comparisons

CAN Chord Tapestry Pastry Kademlia Viceroy

Decentralization DHT functionality on Internet-like scale

Architecture

Multi-
dimensional 
ID coordinate
space.

Uni-directional
and circular
NodeID space.

Plaxton-style
global mesh
network.

Plaxton-style
global mesh 
network.

XOR metric for
distance between
points in the key
space.

Butterfly network
with connected
ring of predecessor
and successor links;
data managed by
servers.

Lookup
protocol

{key, value}
pairs to map a
point P in the
coordinate
space using
uniform hash
function.

Matching key
and NodeID.

Matching suffix
in NodeID.

Matching key and
prefix in NodeID.

Matching key and
NodeID-based
routing.

Routing through
levels of tree until
a peer is reached
with no downlinks;
vicinity search 
performed using
ring and level-ring
links.

System
parameters

N-number of
peers in 
network and
d-number of
dimensions.

N-number of
peers in 
network.

N-number of
peers in 
network and 
B-base of the
chosen peer
identifier.

N-number of
peers in network
and b-number of
bits (B = 2b) used
for the base of
the chosen 
identifier.

N-number of
peers in network
and b-number of
bits (B = 2b) of
NodeID. 

N-number of
peers in network.

Routing
performance O(d.N1/d) O(logN) O(logB N) O(logBN)

O(logBN)+c
where c = small
constant

O(logN)

Routing state 2d logN logBN BlogBN + BlogBN BlogBN + B logN

Peers
join/leave 2d (logN)2 logBN logB N logBN +c where 

c = small constant
logN

Security Low level. Suffers from man-in-middle and Trojan attacks.

Reliability/
fault
resiliency

Failure of peers
will not cause
network-wide
failure. Multiple
peers 
responsible for
each data item.
On failures,
application
retries. 

Failure of
peers will not
cause network-
wide failure.
Replicate data
on multiple
consecutive
peers. On 
failures, appli-
cation retries.

Failure of peers
will not cause
network-wide
failure. 
Replicate data
across multiple
peers. Keep
track of 
multiple paths
to each peer.

Failure of peers
will not cause
network-wide
failure. Replicate
data across 
multiple peers.
Keep track of
multiple paths to
each peer.

Failure of peers
will not cause
network-wide 
failure. Replicate
data across 
multiple peers.

Failure of peers
will not cause 
network-wide 
failure. Load
incurred by
lookups routing
evenly distributed
among 
participating
lookup servers.
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and the descriptive string are hashed independently, XOR’ed
together, and hashed to yield the data file key. For retrieval,
the user publishes the descriptive string together with the user
subspace’s public key. Storing data requires the private key, so
that only the owner of a subspace can add files to it, and own-
ers have the ability to manage their own namespaces. The
third type of key in FreeNet is the Content-Hash Key (CHK),
which is used for updating and splitting of contents. This key is
derived from hashing the contents of the corresponding file,
which gives every file a pseudo-unique data file key. Data files
are also encrypted by a randomly generated encryption key.
For retrieval, the user publishes the content-hash key itself
together with the decryption key. The decryption key is never
stored with the data file but is only published with the data file
key, so as to provide a measure of cover for operators. The
CHK can also be used for splitting data files into multiple
parts in order to optimize storage and bandwidth resources.
This is done by inserting each part separately under a CHK
and creating an indirect file or multiple levels of indirect files
to point to the individual parts. The routing algorithm for stor-
ing and retrieving data is designed to adaptively adjust routes
over time and to provide efficient performance while using
local knowledge, since peers only have knowledge of their
immediate neighbors. Thus, the routing performance is good
for popular content. Each request is given a Hops-To-Live
(HTL) limit, similar to the IP Time-To-Live (TTL), which is
decremented at each peer to prevent infinite chains. Each
request is also assigned a pseudo-unique random identifier, so
that peers can avoid loops by rejecting requests they have seen
before. If this happens, the preceding peer chooses a different
peer to forward to. This process continues until the request
either is satisfied or has exceeded its HTL limit. The success or
failure signal (message) is returned back up the chain to the
sending peer. Joining the network will rely on discovering the
address of one or more of the existing peers through out-of-
band means, and no peer is privileged over any other peer, so
no hierarchy or centralized point of failure can exist. This intu-
itive resilience and decentralization enhances the performance
and scalability, thus giving a constant routing state while peers
join and leave the overlay.

In addition, as described in [64], Freenet uses its data-
store to increase system performance. When an object is
returned (forwarded) after a successful retrieval (insertion),
the peer caches the object in its datastore, and passes the
object to the upstream (downstream) requester, which then
creates a new entry in its routing table associating the object
source with the requested key. Thus, when a new object
arrives from either a new insert or a successful request, this
causes the datastore to exceed the designated size and Least
Recently Used (LRU) objects are ejected in order until
there is space. LRU policy is also applied to the routing
table entries when the table is full.

Figure 7 depicts a typical sequence of request messages.
The user initiates a data request at peer A, which forwards
the request to peer B, and then forwards it to peer C. Peer
C is unable to contact any other peer and returns a back-
tracking failed request message to peer B. Peer B tries its
second choice, peer E, which forwards the request to peer F,
which then delivers it to peer B. Peer B detects the loop and
returns a backtracking failure message. Peer F is unable to
contact any other peer and backtracks one step further back
to peer E. Peer E forwards the request to its second choice,
peer D, which has the data. The data is returned from peer
D, via peers E, B, and A. The data is cached in peers E, B,
and A, therefore it creates a routing short-cut for the next
similar queries. This example shows that the overlay suffers
from security problems such as man-in-middle and Trojan

attacks, and the failure of peers will not cause network-wide
failure, because of its lack of centralized structure. This gives
good reliability and fault resiliency.

GNUTELLA

Gnutella (pronounced newtella) is a decentralized protocol for
distributed search on a flat topology of peers (servents).
Gnutella is widely used, and there has been a large amount of
work on improving Gnutella [71–73]. Although the Gnutella
protocol supports a traditional client/centralized server search
paradigm, Gnutella’s distinction is its peer-to-peer, decentral-
ized model for document location and retrieval, as shown in
Fig. 8. In this model, every peer is a server or client. This sys-
tem is neither a centralized directory nor does it possess any
precise control over the network topology or file placement.
The network is formed by peers joining the network following
some loose rules. The resulting topology has certain proper-
ties, but the placement of data items is not based on any
knowledge of the topology, as in the Structured P2P designs.
To locate a data item, a peer queries its neighbors, and the
most typical query method is flooding. The lookup query pro-
tocol is flooded to all neighbors within a certain radius. Such
design is extremely resilient to peers entering and leaving the
system. However, the current search mechanisms are not scal-
able and generate unexpected loads on the network.

The so-called Gnutella servents (peers) perform tasks nor-
mally associated with both clients and servers. They provide
client-side interfaces through which users can issue queries
and view search results, while at the same time they also
accept queries from other servents, check for matches against
their local data set, and respond with applicable results. These
peers are responsible for managing the background traffic
that spreads the information used to maintain network integri-
ty. Due to its distributed nature, a network of servents that
implement the Gnutella protocol is highly fault-tolerant, as
operation of the network will not be interrupted if a subset of
servents goes offline.

To join the system, a new servent (peer) initially connects
to one of several known hosts that are almost always avail-

n Figure 7. A typical request sequence in Freenet.
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able, e.g., list of peers available from http://gnutellahosts. com.
Once connected to the network, peers send messages to inter-
act with each other. These messages are broadcasted (i.e. sent
to all peers with which the sender has open TCP connections),
or simply back-propagated (i.e., sent on a specific connection
on the reverse of the path taken by an initial, broadcast mes-
sage). First, each message has a randomly generated identifi-
er. Second, each peer keeps a short memory of the recently
routed messages, used to prevent re-broadcasting and to
implement back-propagation. Third, messages are flagged
with TTL and “hops passed” fields. The messages that are
allowed in the network are: 
• Group Membership (PING and PONG) Messages. A

peer joining the network initiates a broadcasted PING
message to announce its presence. The PING message is
then forwarded to its neighbors and initiates a back-
propagated PONG message, which contains information
about the peer, such as the IP address, number and size
of the data items. 

• Search (QUERY and QUERY RESPONSE) Messages.
QUERY contains a user specified search string that each
receiving peer matches against locally stored file names
and it is broadcast. QUERY RESPONSE messages are
backpropagated replies to QUERY messages and include
information necessary to download a file. 

• File Transfer (GET and PUSH) Messages. File down-
loads are performed directly between two peers using
these types of messages.
Therefore, to become a member of the network, a servent

(peer) has to open one or many connections with other peers
that are already in the network. With such a dynamic network
environment, to cope with the unreliability after joining the
network, a peer periodically PINGs its neighbors to discover
other participating peers. Peers decide where to connect in
the network based only on local information. Thus, the entire
application-level network has servents as its peers and open
TCP connections as its links, forming a dynamic, self-organiz-
ing network of independent entities.

The latest versions of Gnutella uses the notion of super-
peers or ultra-peers [11] (peers with better bandwidth connec-
tivity), to help improve the routing performance of the
network. However, it is still limited by the flooding mechanism
used for communications across ultra-peers. Moreover, the
ultra-peer approach makes a binary decision about a peer’s
capacity (ultra-peer or not) and to our knowledge, it has no
mechanism to dynamically adapt the ultra-peer-client topolo-

gies as the system evolves. Ultra-peers perform query process-
ing on behalf of their leaf peers. When a peer joins the net-
work as a leaf, it selects a number of ultra-peers, and then it
publishes its file list to those ultra-peers. A query for a leaf
peer is sent to an ultra-peer, which floods the query to its
ultra-peer neighbors up to a limited number of hops. Dynamic
querying [74] is a search technique whereby queries that
return fewer results are re-flooded deeper into the network.

Saroiu et al. [75] examined the bandwidth, latency, avail-
ability, and file sharing patterns of the peers in Gnutella and
Napster, and highlighted the existence of significant hetero-
geneity in both systems. Krishnamurthy et al. [76] propose a
cluster-based architecture for P2P systems (CAP), which uses
a network-aware clustering technique (based on a central
clustering server) to group peers into clusters. Each cluster
has one or more delegate peers that act as directory servers
for objects stored at peers within the same cluster. Chawathe
et al. [73] propose a model called Gia, by modifying Gnutel-
la’s algorithm to include flow control, dynamic topology
adaptation, one-hop replication, and careful attention to peer
heterogeneity. The simulation results suggest that these mod-

ifications provide three to five orders of magnitude improve-
ment in the total capacity of the system while retaining
significant robustness to failures. Thus, making a few simple
changes to Gnutella’s search operations would result in dra-
matic improvements in its scalability. 

FASTTRACK/KAZAA

FastTrack [65] P2P is a decentralized file-sharing system that
supports meta-data searching. Peers form a structured overlay
of super-peer architectures to make search more efficient, as
shown in Fig. 9. Super-peers are peers with high bandwidth,
disk space, and processing power, and have volunteered to be
elected to facilitate search by caching the meta-data. The ordi-
nary peers transmit the meta-data of the data files they are
sharing to the super-peers. All the queries are also forwarded
to the super-peer. Then, Gnutella-type broadcast-based search
is performed in a highly pruned overlay network of super-
peers. The P2P system can exist without any super-peer, but
this would result in worse query latency. However, this
approach still consumes bandwidth so as to maintain the index
at the super-peers on behalf of the peers that are connected.
The super-peers still use a broadcast protocol for search, and
the lookup queries are routed to peers and super-peers that
have no relevant information to the query. Both KaZaA [66]
and Crokster [77] are both FastTrack applications.

As mentioned, KaZaA is based on the proprietary Fast-
Track protocol which uses specially designated super-peers
that have higher bandwidth connectivity. Pointers to each
peer’s data are stored on an associated super-peer, and all
queries are routed to the super-peers. Although this approach
seems to offer better scaling properties than Gnutella, its
design has not been analyzed. There have been proposals to
incorporate this approach into the Gnutella network [11]. The
KaZaA peer-to-peer file sharing network client supports a
similar behavior, allowing powerful peers to opt-out of net-
work support roles that consume CPU and bandwidth.

KaZaA file transfer traffic consists of unencrypted HTTP
transfers; all transfers include KaZaA-specific HTTP headers
(e.g., X-KaZaA-IP). These headers make it simple to distin-
guish between KaZaA activity and other HTTP activity. The
KaZaA application has an auto-update feature, meaning a
running instance of KaZaA will periodically check for updated
versions of itself. If it is found, it downloads the new exe-
cutable over the KaZaA network.

A power-law topology, commonly found in many practical

n Figure 8. Gnutella utilizes a decentralized architecture docu-
ment location and retrieval.
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networks such as WWW [78, 79], has the property that a small
proportion of peers have a high out-degree (i.e., have many
connections to other peers), while the vast majority of peers
have a low out-degree (i.e., have connections to few peers).
Formally, the frequency fd of peers with out-degree d exhibits
a power-law relationship of the form fd ∝ da; a < 0. This is
the Zipf property with Zipf distributions looking linear when
plotted on a log-log scale. Faloutsos et al. [80] have found that
Internet routing topologies follow this power-law relationship
with a ≈ –2. However, Gummadi et al. [75, 81] observe that
the KaZaA measured popularity of the file-sharing workload
does not follow a Zipf distribution. The popularity of the most
requested objects (mostly large, immutable video and audio
objects) is limited, since clients typically fetch objects at most
once, unlike the Web. Thus, the popularity of KaZaA’s
objects tends to be short-lived, and popular objects tend to be
recently born. There is also significant locality in the KaZaA
workload, which means that substantial opportunity exists for
caching to reduce wide-area bandwidth consumption.

BITTORRENT

BitTorrent [67] is a centralized P2P system that uses a central
location to manage users’ downloads. This file distribution
network uses tit-for-tat (peer responds with the
same action that its other collaborating peer per-
formed previously) as a method of seeking. The
protocol is designed to discourage free-riders by
having the peers choose other peers from which
the data has been received. Peers with high
upload speed will probably also be able to down-
load at a high speed, thus achieving high band-
width utilization. The download speed of a peer
will be reduced if the upload speed has been lim-
ited. This will also ensure that content will be
spread among peers to improve reliability.

The architecture consists of a central location,
which is a tracker that is connected to when you
download a .torrent file, which contains informa-
tion about the file, its length, name, and hashing
information, and URL of a tracker, as illustrated
in Fig. 10. The tracker keeps track of all the
peers who have the file (both partially and com-
pletely) and lookup peers to connect with one
another for downloading and uploading. The
trackers use a simple protocol layered on top of

HTTP in which a downloader sends information about the
file it is downloading and the port number. The tracker
responds with a random list of contact information about
the peers that are downloading the same file. Download-
ers then use this information to connect to each other. A
downloader that has the complete file, known as a seed,
must be started and must send out at least one complete
copy of the original file.

BitTorrent cuts files into pieces of fixed size (256
Kbytes) so as to track the content of each peer. Each
downloader peer announces to all of its peers the pieces it
has, and uses SHA1 to hash all the pieces that are includ-
ed in the .torrent file. When a peer finishes downloading a
piece and checks that the hash matches, it announces that
it has that piece to all of its peers. This is to verify data
integrity. Peer connections are symmetrical. Messages sent
in both directions look the same, and data can flow in
either direction. When data is being transmitted, down-
loader peers keep several requests (for pieces of data)
queued up at once in order to achieve good TCP perfor-
mance. This is known as pipelining. Requests that cannot

be written out to the TCP buffer immediately are queued up
in memory rather than kept in an application-level network
buffer, so they can all be thrown out when a choke happens.

Choking is a temporary refusal to upload; downloading can
still happen and the connection does not need to be renegoti-
ated when choking stops. Choking is done for several reasons.
TCP congestion control behaves very poorly when sending
over many connections at once. Additionally, choking lets
each peer use a tit-for-tat-like algorithm to ensure that they
achieve a consistent download rate. There are several criteria
that a good choking algorithm should meet. It should cap the
number of simultaneous uploads for good TCP performance.
It should avoid choking and unchoking quickly, known as fib-
rillation. It should reciprocate service access to peers who let
it download. Finally, it should try out unused connections
once in a while to find out if they might be better than the
currently used connections, known as optimistic unchoking.

The currently deployed BitTorrent choking algorithm
avoids fibrillation by only changing the peer that is choked
once every ten seconds. It does reciprocation, and the number
of uploads are capped by unchoking the four peers with the
best download rates and greatest interest. Peers that have a
better upload rate but are not interested get unchoked and if
they become interested, the worst uploader gets choked. If a

n Figure 10. BitTorrent architecture consists of centralized Tracker and
.torrent file.
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downloader has a complete file, it uses its upload rate rather
than its download rate to decide which to unchoke. For opti-
mistic unchoking, at any one time there is a single peer that is
unchoked regardless of its upload rate. If this peer is interest-
ed, it counts as one of the four allowed downloaders. Peers
that are optimistically unchoked rotate every 30 seconds.

OVERNET/EDONKEY2000

Overnet/eDonkey [68, 69] is a hybrid two-layer P2P informa-
tion storage network composed of client and server, which are
used to publish and retrieve small pieces of data by creating a
file-sharing network. This architecture provides features such
as concurrent download of a file from multiple peers, detec-
tion of file corruption using hashing, partial sharing of files
during downloading, and expressive querying methods for file
search. To join the network, the peer (client) needs to know
the IP address and port of another peer (server) in the net-
work. It then bootstraps from the other peer. The clients con-
nect to a server and register the object files that they are
sharing by providing the meta-data describing the object files.
After registration, the clients can either search by querying
the meta-data or request a particular file through its unique
network identifier, thus providing guaranteed service to locate
popular objects. Servers provide the locations of object files
when requested by clients, so that clients can download the
files directly from the indicated locations.

DISCUSSION ON UNSTRUCTURED
P2P OVERLAY NETWORK

The Unstructured P2P centralized overlay model was first
popularized by Napster. This model requires some managed
infrastructure (the directory server) and show some scalability
limits. A flooding-requests model for decentralized P2P over-
lay systems such as Gnutella, whereby each peer keeps a user-
driven neighbor table to locate data objects, are quite effective
in locating popular data objects, thanks to the power-law
property of user-driven characteristics. However, it can lead to
excessive network bandwidth consumption, and remote or
unpopular data objects may not be found due to the limit of
lookup horizon typically imposed by TTL.

The argument is that DHT-based systems, while more effi-
cient at many tasks and offering strong theoretical fundamen-
tals to guarantee a key to be found if it exists, are not well
suited for mass-market file sharing. They do not capture the
semantic object relationships between its name and its content
or metadata. In particular, DHT-based ability to find exceed-
ingly rare objects is not required in a mass-market file sharing
environment, and their ability to efficiently implement key-
word search is still not proven. In addition, they use precise
placement algorithms and specific routing protocols to make
searching efficient. However, these Structured P2P overlay
systems have not been widely deployed, and their ability to
handle unreliable peers has not been tested. Thus, in the
research community, efforts are being made to improve the
lookup properties of Unstructured P2P overlays to include
flow control, dynamic geometric topology adaptation [82, 83],
one-hop replication, peer heterogeneity, etc.

Freenet, like Chord, does not assign responsibility for data
to specific peers, and its lookups take the form of searches for
cached copies. This prevents it from guaranteeing retrieval of
existing data or from providing low bounds on retrieval costs.
But Freenet provides anonymity and it introduces a novel
indexing scheme whereny files are identified by content-hash
keys and by secured signed-subspace keys to ensure that only

one object owner can write to a file and anyone can read it.
P2P overlay designs using DHTs share similar characteristics
as Freenet — an exact query yields an exact response. This is
not surprising since Freenet uses a hash function to generate
keys. Recent research in [84] shows that changing Freenet’s
routing table cache replacement scheme from LRU to enforc-
ing clustering in the key space can significantly improve per-
formance. This idea is based on the intuition from the
small-world models [39] and theoretical results by Kleinberg
[39].

Version 0.6 of the Gnutella protocol [9, 10] adopted the
concept of ultra-peers, which are high-capacity peers that act
as proxies for lower-capacity peers. One of the main enhance-
ments is the Query Routing Protocol (QRP), which allows the
leaf peers to forward an index of object name keywords to its
ultra-peers [85]. This allows the ultra-peers to have their
leaves receive lookup queries when they have a match, and
subsequently, it reduces the lookup query traffic at the leaves.
A shortcoming of QRP is that the lookup query propagation
is independent of the popularity of the objects. The Dynamic
Query Protocol [86] addressed this by letting the leaf peers
send single queries to high-degree ultra-peers, which adjust
the lookup queries’ TTL bounds in accordance with the num-
ber of received lookup query results. The Gnutella UDP
Extension for Scalable Searches (GUESS) [87] also aimed to
reduce the number of lookup queries by repeatedly querying
single ultra-peers with a TTL of 1, to limit the load on each
lookup query.

As described earlier, Chawathe et al. [73] improve the
Gnutella design in their Gia system, by incorporating an adap-
tation algorithm so that peers are attached to high-degree
peers, and by providing a receiver-based token flow control
for sending lookup queries to neighbors. Instead of flooding,
they make use of a random walk search algorithm as the sys-
tem keeps pointers to objects in neighboring peers. However,
in [87] they proposed that Unstructured P2P overlays such as
Gnutella can be built on top of Structured P2P overlays to
help reduce the lookup query overhead and overlay mainte-
nance traffic. They used the collapse point lookup query rate
(defined as the per node query rate at which the successful
query rate falls below 90 percent) and the average hopcounts
prior to collapse. However, the comparison was done in a
static network scenario with the older Gnutella and not the
enhanced version of Gnutella.

BitTorrent, a second-generation P2P overlay system,
achieves higher levels of robustness and resource utilization
based on its incentives cooperation technique for file distribu-
tion. The longest and most comprehensive measurement study
of a BitTorrent P2P system [88] provides more insight by
comparing a detailed measurement study of BitTorrent with
other popular P2P file-sharing systems, such as
FastTrack/KaZaA, Gnutella, Overnet/eDonkey, and Direct-
Connect, based on five characteristics:
1 Popularity: Total number of users participating over a

certain period of time.
2 Availability: System availability depending on contributed

resources.
3 Download Performance: Contrast between size of data

and the time required for download.
4 Content Lifetime: Time period when data is injected into

the system until no peer is willing to share the data any-
more.

5 Pollution Level: Fraction of corrupted content spread
throughout the system.

FastTrack/KaZaA has the largest file sharing community, with
Overnet/eDonkey and BitTorrent gaining popularity. The
popularity of the BitTorrent system is influenced by the avail-
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ability of the central components in terms of its number of
downloads and technical faults in the system. Availability has
a significant influence on popularity. FastTrack/KaZaA, being
more advanced in architecture, has good availability because
of its Super-Peers that allow the network to scale very well by
creating indexing. Gnutella and Overnet/eDonkey provide full
and partial distribution of the responsibility for shared files,
respectively. The availability of content in BitTorrent is unpre-
dictable and vulnerable to potential failures, due to its lack of
decentralization. BitTorrent is well-suited for download per-
formance due to its advanced download distribution protocol.
Overnet/eDonkey takes an opposite approach by offering
powerful searching capabilities and queue-based scheduling of
downloads, which can have longer waiting times. The lack of
archive functionality in BitTorrent results in relatively short
content lifetimes. FastTrack/KaZaA, which uses directory-
level sharing policy, allows data files to be located as long as
the peer holding the data file stays connected. The FastTrack/
KaZaA system does not limit the number of fake files in the
overlay but it allows users to identify correct files based on
hash-code verification. BitTorrent prevents fake files from
floating in the system. The arising use of firewalls and NATs
are growing problems for P2P systems because of the reduced
download speed. One proposal [89] tries to solve the firewall
problems by designing a hybrid CDN structure with a P2P-
based streaming protocol in the access network based on an
empirical study of BitTorrent, which highlighted the need for
additional freeloader protection and the potential negative
effect of firewalls on download speeds. A fluid model for Bit-
Torrent-like networks was proposed [90] to capture the
behavior of the system when the arrival rate is small, and to
study the steady-state network performance. The study also
provided expressions for the various parameters, such as aver-
age number of sees, the average number of downloaders, and
the average downloading time, and proved that Nash equilib-
rium exists for each peer that chooses its uploading bandwidth
to be equal to the actual uploading bandwidth.

It is also interesting to note that most of these Unstruc-
tured P2P networks (such as KaZaA and Gnutella) are not
pure power-law networks with Zipf distribution properties.
For example, analysis in [91] shows that Gnutella networks
have topologies that are power-law random graphs, and later
measurement shows that there are too few peers with a low
number of connectivity. This may be attributed to the behav-
ior of the users of these P2P networks. Research on power-
law networks [78, 80, 92, 93] shows that networks as diverse as
the Internet organize themselves so that most peers have few
links while a small number of peers have a large number of
links. The interesting paper by Adamic et al. [94] studies ran-
dom-walk search strategies in power-law networks, and dis-
covers that by changing walkers to seek out high-degree peers,
the search performance can be optimized greatly. Several
search techniques for Unstructured P2P networks are dis-
cussed in [95]: iterative deepening, directed Breadth-First
Traversal Search (BFS), and local indices. Networks with
power-law organizational structure display an unexpected
degree of robustness [96], i.e. the ability of the peers to com-
municate unaffectedly even by extremely high failure rates.
But these networks are prone to attacks. Thus, Unstructured
P2P networks reduce the network dependence on a small
number of highly connected, easy to attack peers.

Instead of using DHT as building blocks in distributed
applications, SkipNet [97] is an overlay based on Skip Lists
that organizes peers and data primarily by their sorted string
names, as Skip Lists do, rather than by hashes of those names.
In this way, SkipNet supports useful locality properties as well
as the usual DHT functionality. In addition, some recent

research, e.g., Loo et al. [98], proposes the design of a hybrid
model by using Structured DHT techniques to locate rare
object items, and Unstructured flooding to locate highly repli-
cated contents. More interestingly, the performance studies
on lightweight hierarchical P2P overlay networks [82, 83]
make use of the geometric structure in Yao-Graphs [99] and
Highways [100] proximity placement scheme to assign geomet-
ric co-ordinates to Super-Peers and Peers with respect to the
underlying network conditions. Because of the lightweight
structure of Yao-Graphs, the resulting hierarchical P2P net-
works have promising properties with regard to scalability and
performance, while still offering the benefits of resiliency.

All of the security, privacy, and trust issues discussed in the
Structured P2P overlay network section applies to Unstruc-
tured P2P overlay networks. It is worthwhile to highlight the
work from Bellovin [101]. The paper reports on the difficulty
in limiting Napster’s and Gnutella’s use via firewalls and how
information can be leaked through search queries in the over-
lay network. The work highlighted concern over Gnutella’s
push feature, intended to work around firewalls, which might
be useful for distributed denial of service attacks. Napster’s
centralized architecture might be more secure toward such
attacks due to a centralized trusted server. Table 2 summa-
rizes the comparisons of Unstructured P2P networks. While
by no means comprehensive, we believe that it captures the
essence of the discussion and analysis done earlier.

CONCLUDING REMARKS

This article has presented various schemes in Structured and
Unstructured P2P overlay networks that have been proposed
by researchers. Which of these P2P overlay networks is best
suited depends on the application and its required functionali-
ties and performance metrics, e.g. scalability, network routing
performance, location service, file sharing, content distribu-
tion, and so on. Several of these schemes are being applied to
the sharing of music, replication of electronic address books,
multi-player games, provisioning of mobile, location, or ad-
hoc services, and the distribution of workloads of mirrored
Web sites.

Finally, we close this survey with our thoughts on some
directions for the future in P2P overlay networking research. 

•The concerns of how well the P2P overlay networks’ vir-
tual topology maps on to the physical network infrastructure,
which has an impact on the additional stress on the infra-
structure, will undoubtedly incur costs for the service pro-
viders. It would be useful to provide a quantitative evaluation
on P2P overlay applications and Internet topology matching
and the scalability of P2P overlay applications by the efficient
use of the underlying physical network resources. 

•Having some sort of incentive model using economic and
game theories for P2P peers to collaborate is crucial to create
an economy of equilibrium. When non-cooperative users ben-
efit from free-riding on others’ resources, the tragedy of the
commons [102] is inevitable. Such incentives implementation
in P2P overlay services would also provide a certain level of
self-regulatory auditing and accounting behavior for resource
sharing. 

•Trust and reputation is also important to achieve secured
and trustworthy P2P overlay communications among the
peers. For example, Kademlia developed a trust and secured
architecture for routing and location service, by discouraging
free-riding based on honesty, and routing away from the
defective or malicious peer. 

•Proximity in P2P overlay routing is an important factor in
the routing decision for P2P overlay networks which could
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improve global routing properties. There is ongoing research
in this area based on mapping the peers into geometric coor-
dinate-based space [100, 103–112] and heuristic proximity
routing optimizations [113–117]. Taking heterogeneity of the
peers and its geometric properties [82, 83] into account when
delegating responsibility across peers, P2P overlays will
improve the routing scalability. Future research would aim to
reduce the stretch (ratio of overlay path to underlying net-

work path) routing metric based on scalable and robust prox-
imity calculations (e.g., in geometric space). This leads to
improved P2P overlay operations performance globally. A
mixed set of metrics which include delay, throughput, avail-
able bandwidth, and packet loss would provide a more effi-
cient global routing optimization. 

•Cross-application of Internet P2P overlay networking
models in mobile, wireless, or ad-hoc networks. Because of

n Table 2. A comparison of various unstructured P2P overlay network schemes.

Algorithm
taxonomy

Unstructured P2P Overlay Network Comparisons

Freenet Gnutella FastTrack/KaZaA BitTorrent Overnet/eDonkey 2000

Decentralization Loosely DHT 
functionality.

Topology is flat
with equal peers.

No explicit central
server. Peers are
connected to their
Super-Peers.

Centralized model
with a Tracker 
keeping track of
peers.

Hybrid two-layer 
network composed of
clients and servers.

Architecture

Keywords and
descriptive text
strings to identify
data objects.

Flat and ad-hoc
network of 
servents (peers).
Flooding request
and peers 
download directly.

Two-level 
hierarchical 
network of 
Super-Peers and
peers.

Peers request 
information from a
central Tracker.

Servers provide the 
locations of files to
requesting clients for
download directly.

Lookup
protocol

Keys, Descriptive
Text String search
from peer to peer.

Query flooding. Super-Peers. Tracker. Client-server peers.

System
parameters None. None. None. .torrent file. None.

Routing
performance

Guarantee to
locate data using
Key search until
the requests
exceeded the
Hops-To-Live
(HTL) limits.

No guarantee to
locate data;
improvements
made in adapting
ultrapeer-client
topologies; good
performance for
popular content.

Some degree of
guarantee to
locate data, since
queries are routed
to the Super-Peers,
which has better
scaling; good 
performance for
popular content.

Guarantee to locate
data and guarantee
performance for 
popular content.

Guarantee to locate data
and guarantee 
performance for popular
content.

Routing state Constant. Constant. Constant.
Constant but choking
(temporary refusal to
upload) may occur.

Constant.

Peers
join/leave Constant. Constant. Constant. Constant.

Constant with bootstrap-
ping from other peers and
connect to server to 
register files being shared.

Security

Low; suffers from
man-in-middle
and Trojan
attacks.

Low; threats:
flooding, 
malicious content,
virus spreading,
attack on queries,
and denial of 
service attacks.

Low; threats:
flooding, malicious
or fake content,
viruses, etc. Spy-
ware monitors the
activities of peers
in the background.

Moderate; centralized
Tracker manages file
transfer and allows
more control, which
makes it much harder
to fake IP addresses,
port numbers, etc.

Moderate; threats similar
to those in FastTrack and 
Bit-Torrent.

Reliability/
fault
resiliency

No hierarchy or
central point of
failure exists.

Degradation of
the performance;
peers receive 
multiple copies of
replies from peers
that have the
data; requester
peers can retry.

The ordinary peers
are reassigned to
other Super-Peers.

The Tracker keeps
track of the peers and
availability of the
pieces of files; avoid
choking by fibrillation
by changing the peer
that is choked once
every ten seconds.

Reconnecting to another
server; will not receive
multiple replies from
peers with available
data.
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their similar features, such as self-organizing, peer-to-peer
routing, and resilient communications, application of P2P
overlay approaches would allow mobile peers to have opti-
mized flow control, load balancing mechanism, proximity-
aware, and QoS routing [118]. There are also exciting
challenges and issues for applying P2P overlay networks in a
hybrid wired and wireless network environment. We see the
future of P2P overlay networks inexorably linked to the take-
up and subsequent commercial success of P2P overlay com-
puting, personal area and ad-hoc networking, mobile
location-based services, mirrored content delivery, and net-
worked file-sharing, as examples. We may also conjecture that
the prevalent problems of the Internet — controlling spam,
maintaining directory services, multicasting content, etc. —
have intuitive solutions from various P2P overlay network
schemes. However, in order to move forward, the develop-
ment community needs to understand the applicability of vari-
ous schemes for Structured and Unstructured P2P overlay
network models. This survey has been a modest attempt to
address this need. 
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