
Tutorial for coursework Part 2

UG3 Computer Communications & Networks
(COMN)

Mahesh Marina
mahesh@ed.ac.uk

Slides thanks to Myungjin Lee.

mailto:mahesh@ed.ac.uk

Overview

• To understand the purpose of multithreading
• To describe Java's multithreading mechanism
• To explain concurrency issues caused by

multithreading
• To outline synchronized access to shared

resources

2

What is multithreading?

• Multithreading is similar to multi-processing
• A multi-processing OS can run several processes

at the same time
– Each process has its own address/memory space
– Separate processes do not have access to each other's

memory space
• In a multithreaded application, there are several

points of execution within the same memory space
– Each point of execution is called a thread
– Threads share access to memory

3

Thread Support in Java

• The Java Virtual machine has its own runtime
threads
– Used for garbage collection

• Threads are represented by a Thread class
– A thread object maintains the state of the thread
– It provides control methods such as interrupt, start,

sleep, yield, wait
• When an application executes, the main method is

executed by a single thread
– If the application requires more threads, the application

must create them

4

Thread States

• Threads can be in one of four states
– Created, Running, Blocked, and Dead

• A thread's state changes based on:
– Control methods such as start, sleep, yield, wait, notify
– Termination of the run method

5

Runnablestart()CreatedThread()

Dead

run() method
terminates

Blocked
sleep()
wait()

notify()

How does a thread run?

• The thread class has a run() method
– run() is executed when the thread's start() method is

invoked
• The thread terminates if the run method terminates

– run() method often has an endless loop to prevent thread
termination

• One thread starts another by calling its start method

6

Thread1

Thread Object

start() Thread2

run()

Creating your own Threads

• A way to create your own threads is to subclass the
Thread class and then override the run() method
– This is the easiest way to do it although not recommended

• The object which provides the run method is usually a
subclass of some other class
– If it inherits from another class, it cannot inherit from Thread

• The solution to this problem is Runnable interface
– Runnable defines one method - public void run()
– Thread class constructor can take a reference to a Runnable

object
– When the thread is started, it invokes the run method in the

runnable object instead of its own run method

7

Using Runnable

• When the Thread object is instantiated, it is passed
a reference to a "Runnable" object
– The Runnable object must implement the “run” method

• When the thread object receives a start message,
it checks if it has a reference to a Runnable object:
– If it does, it runs the "run" method of that object
– If not, it runs its own "run" method

8

Thread1
Thread Object

start() Thread2

run()
Runnable Object

run()

Example Code

9

public class thdexp1 {
public static int count = 0;
private static class MyThread implements Runnable {

public void run() {
while (count <= 10) {

System.out.println("MyThread: " + count++);
try {

Thread.sleep (100);
} catch (InterruptedException e) {}

}
}

}

Example Code

10

public static void main(String[] args) {
System.out.println ("Starting Main Thread...");
MyThread mythd = new MyThread();
Thread t = new Thread (mythd);
t.start();
while (count <= 10) {

System.out.println ("MainThread: " + count++);
try {

Thread.sleep (100);
} catch (InterruptedException e) {}

}
}

}

Creating Multiple Threads

• The previous example illustrates a Runnable class
which creates its own thread when the start
method is invoked

• To create multiple threads, one could simply create
multiple instances of the Runnable class and send
each object a start message
– Each instance would create its own thread object

11

Synchronization

12

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect
results if executed simultaneously are called critical
sections

• (We also use the term race condition to refer to a
situation in which the results depend on timing)

• Mutual exclusion means “not simultaneous”
– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section
executions is sufficient to ensure correct execution –
guarantees ordering

• One way to guarantee mutually exclusive execution is
using locks

13

14

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

When do critical sections arise?

• One common pattern:
– read-modify-write of
– a shared value (variable)
– in code that can be executed concurrently

• Shared variable:
– Globals and heap-allocated variables
– NOT local variables (which are on the stack)

15

Example: shared bank account

• Suppose we have to implement a function to
withdraw money from a bank account:
int withdraw(account, amount) {
int balance = get_balance(account); // read
balance -= amount; // modify
put_balance(account, balance); // write
spit out cash;

}

• Now suppose that you and your partner share a
bank account with a balance of $100.00
– what happens if you both go to separate ATM machines,

and simultaneously withdraw $10.00 from the account?

16

• Assume the bank’s application is multi-threaded
• A random thread is assigned a transaction when

that transaction is submitted

17

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

Interleaved schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you? 18

balance = get_balance(account);

balance -= amount;
balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section
– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until
the lock can be acquired

• Note: terminology varies: acquire/release,
lock/unlock

19

20

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

Java Synchronization Mechanism

• Java has a keyword called synchronized

• In Java, every object has a lock
– To obtain the lock, you must synchronize with the object

• The simplest way to use synchronization is by
declaring one or more methods to be synchronized

21

Example 1

22

public class SavingsAccount
{
private float balance;

public synchronized void withdraw(float anAmount)
{

if ((anAmount>0.0) && (anAmount<=balance))
balance = balance - anAmount;

}

public synchronized void deposit(float anAmount)
{

if (anAmount>0.0)
balance = balance + anAmount;

}

Example 2
public class SavingsAccount {
private float balance;

public void withdraw(float anAmount) {
if (anAmount<0.0)
throw new IllegalArgumentException("Withdraw amount negative");

synchronized(this) {
if (anAmount<=balance)
balance = balance - anAmount;

}
}

public void deposit(float anAmount) {
if (anAmount<0.0)
throw new IllegalArgumentException("Deposit amount negative");

synchronized(this) {
balance = balance + anAmount;

}
}

Example Codes

24

https://tinyurl.com/y3ges4fh

thdexp1.java and thdexp2.java
from

https://drive.google.com/drive/folders/1lwG73-e6ISL_QesQJV2idbO0FfRXbrMY

Design choices for Part 2

• Both sender and receiver are implementable
without multithreading
– Definitely no need for multithreading at the receiver side
– Multithreading may be useful for sender implementation

• Use non-blocking socket for non-threaded
implementation
– Refer to DatagramChannel package

• Many design choices for the sender are possible

25

Sketch of one design for Part 2A

26

Receiver 2A

Timer
Thread

ACK Receive
Thread

Notify timeout

Timer start/stop

Base seqno

Data (Re)Send
Thread

Next seqno

Sender 2A

buffer

Timer start

Sketch of one design for Part 2B

27

Receiver 2B

Timer + ReTx
Thread

ACK Receive
Thread

ACK marking

Base seqno

Data Send
Thread

Next seqno

Sender 2B

buffer

Timer start

Timer Queue

Timer restart

For ReTx

