
Chapter II: Application Layer

UG3 Computer Communications & Networks
(COMN)

MAHESH MARINA
mahesh@ed.ac.uk

Slides copyright of Kurose and Ross

http://ed.ac.uk

Internet hourglass

Here

2

Some network apps

• e-mail
• web
• text messaging
• remote login
• P2P file sharing
• multi-user network games
• streaming stored video

(YouTube, Hulu, Netflix)

• voice over IP (e.g., Skype)
• real-time video

conferencing
• social networking
• search
• …
• …

3

Creating a network app

write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server software

communicates with browser software

no need to write software for network-
core devices

• network-core devices do not run user
applications

• applications on end systems allows for
rapid app development, propagation

4

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

possible structure of applications:
• client-server
• peer-to-peer (P2P)

5

Client-server architecture

6

server:
• always-on host
• permanent IP address
• data centers for scaling

clients:
• communicate with server
• may be intermittently

connected
• may have dynamic IP addresses
• do not communicate directly

with each other

client/server

P2P architecture

• no always-on server
• arbitrary end systems directly

communicate
• peers request service from other

peers, provide service in return to
other peers
– self scalability – new peers bring

new service capacity, as well as
new service demands

• peers are intermittently connected
and change IP addresses
– complex management

7

peer-peer

Processes communicating

8

process: program running
within a host

• within same host, two
processes communicate
using inter-process
communication (defined by
OS)

• processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

v aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Sockets

• process sends/receives messages to/from its socket
• socket analogous to door

– sending process shoves message out door
– sending process relies on transport infrastructure on other

side of door to deliver message to socket at receiving process

14

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Addressing processes

10

• to receive messages,
process must have identifier

• host device has unique 32-
bit IP address

• Q: does IP address of host
on which process runs
suffice for identifying the
process?

• identifier includes both IP
address and port numbers
associated with process on
host.

• example port numbers:
– HTTP server: 80
– mail server: 25

• to send HTTP message to
www.inf.ed.ac.uk web
server:
– IP address: 129.215.33.176
– port number: 80

• more shortly…

§ A: no, many processes
can be running on same
host

App-layer protocol defines

• types of messages exchanged,
– e.g., request, response

• message syntax:
– what fields in messages &

how fields are delineated
• message semantics

– meaning of information in
fields

• rules for when and how
processes send & respond to
messages

open protocols:
• defined in RFCs
• allows for interoperability
• e.g., HTTP, SMTP
proprietary protocols:
• e.g., Skype

11

What transport service does an app need?

12

timing
• some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

data integrity
• some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

• other apps (e.g., audio) can
tolerate some loss

throughput
v some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

v other apps (“elastic apps”)
make use of whatever
throughput they get

security
v encryption, data integrity,

…

Transport service requirements: common apps

13

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Internet transport protocols services

TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client and
server processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup,

Q: why bother? Why is there a
UDP?

14

Internet apps: application, transport protocols

15

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Socket programming

goal: learn how to build network applications that
communicate using sockets

socket: door between application process and end-to-end
transport protocol

16

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket programming

Two socket types for two transport services:
– UDP: unreliable datagram
– TCP: reliable, byte stream-oriented

17

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Socket programming with UDP

UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address and

port # to each packet
• rcvr extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/Server Socket Interaction: UDP

Server (running on server IP)

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket at port = x:
serverSocket =
DatagramSocket(x)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Example: Java client (UDP)

se
nd

Pa
ck

et

to network from network
re

ce
ive

Pa
ck

et

in
Fr

om
Us

er

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet

Input: receives
packet

Client
process

client UDP socket

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();
sendData = sentence.getBytes();

create
input stream

create
client socket

translate
hostname to IP

address using DNS

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

create datagram with
data-to-send,

length, IP addr, port

send datagram
to server

read datagram
from server

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

create
datagram socket

at port 9876

create space for
received datagram

receive
datagram

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}
}

get IP addr
port #, of

sender

write out
datagram
to socket

end of while loop,
loop back and wait for
another datagram

create datagram
to send to client

Connectionless demultiplexing

vrecall: created socket has
host-local port #:

DatagramSocket mySocket1 =
new DatagramSocket(12534);

vwhen host receives UDP
segment:
§ checks destination port #

in segment
§ directs UDP segment to

socket with that port #

v recall: when creating
datagram to send into
UDP socket, must specify
§ destination IP address
§ destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

Connectionless demux: example
DatagramSocket
serverSocket = new
DatagramSocket
(6428);

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

Socket programming with TCP

client must contact server
• server process must first be

running
• server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
• Creating TCP socket,

specifying IP address, port
number of server process

• when client creates socket:
client TCP establishes
connection to server TCP

• when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
– allows server to talk with

multiple clients
– 4-tuple (clarified shortly)

used to distinguish clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Illustration of TCP socket in client/server

28

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket(x)

create socket,
connect to hostid, port=x
clientSocket =

Socket(hostid,x)

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.ed.ac.uk

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

create
input stream

attached to socket

send line
to server

read line
from server

close socket

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{
String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

create
welcoming socket

at port 6789

create input
stream, attached

to socket

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);

connectionSocket.close();
}

}
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

Connection-oriented demux

vTCP socket identified
by 4-tuple:
§ source IP address
§ source port number
§ dest IP address
§ dest port number

vdemux: receiver uses all
four values to direct
segment to appropriate
socket

vserver host may support
many simultaneous TCP
sockets:
§ each socket identified by

its own 4-tuple
vweb servers have

different sockets for
each connecting client
§ non-persistent HTTP

(coming up shortly) will
have different socket for
each request

Connection-oriented demux: example

transport

application

physical
link

network

P3
transport

application

physical
link

P4

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

Connection-oriented demux: example

transport

application

physical
link

network

P3
transport

application

physical
link

transport

application

physical
link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Web and HTTP

First, a review…
• web page consists of objects
• object can be HTML file, JPEG image, Java applet, audio

file,…
• web page consists of base HTML-file which includes

several referenced objects
• each object is addressable by a URL, e.g.,

37

www.someschool.edu/someDept/pic.gif

host name path name

38

Objects

HTTP overview

39

• Web’s application layer
protocol

• client/server model
– client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

– server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

HTTP: hypertext transfer protocol

HTTP overview (continued)

uses TCP:
• client initiates TCP connection

(creates socket) to server,
port 80

• server accepts TCP
connection from client

• HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

• TCP connection closed

HTTP is “stateless”
• server maintains no

information about past
client requests

40

protocols that maintain
“state” are complex!

v past history (state) must be
maintained

v if server/client crashes, their views
of “state” may be inconsistent,
must be reconciled

aside

HTTP connections

non-persistent HTTP
• at most one object sent

over TCP connection
– connection then

closed
• downloading multiple

objects requires
multiple connections

persistent HTTP
• multiple objects can be

sent over single TCP
connection between
client and server

41

Non-persistent HTTP

42

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

suppose user enters URL:

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP (cont.)

43

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP connection.

time

Non-persistent HTTP: response time

44

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time:
• one RTT to initiate TCP

connection
• one RTT for HTTP request

and first few bytes of HTTP
response to return

• file transmission time
• non-persistent HTTP response

time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Persistent HTTP

non-persistent HTTP issues:
• requires 2 RTTs per object
• OS overhead for each TCP

connection
• browsers often open

parallel TCP connections to
fetch referenced objects

persistent HTTP:
• server leaves connection

open after sending response
• subsequent HTTP messages

between same client/server
sent over open connection

• client sends requests as
soon as it encounters a
referenced object

• as little as one RTT for all
the referenced objects

45

HTTP request message

• two types of HTTP messages: request, response
• HTTP request message:

– ASCII (human-readable format)

46

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

HTTP request message: general format

47

request
line

header
lines

body

method sp sp cr lfversionURL
cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Uploading form input

48

URL method:
• uses GET method

• input is uploaded in URL field of request line:

POST method:
• web page often includes form input

• input is uploaded to server in entity body

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0:
• GET
• POST
• HEAD

– asks server to leave
requested object out of
response

HTTP/1.1:
• GET, POST, HEAD
• PUT

– uploads file in entity
body to path specified in
URL field

• DELETE
– deletes file specified in

the URL field

49

HTTP response message

50

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

HTTP response status codes

51

200 OK
– request succeeded, requested object later in this msg

301 Moved Permanently
– requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

– request msg not understood by server
404 Not Found

– requested document not found on this server
505 HTTP Version Not Supported

v status code appears in 1st line in server-to-
client response message.

v some sample codes:

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed by
user’s browser

4) back-end database at
Web site

example:
• Susan always access Internet

from PC
• visits specific e-commerce

site for first time
• when initial HTTP requests

arrives at site, site creates:
– unique ID
– entry in backend

database for ID

52

Cookies: keeping “state” (cont.)

53

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Cookies (continued)

54

what cookies can be used for:
• authorization
• shopping carts
• recommendations
• user session state (Web e-

mail)

cookies and privacy:
v cookies permit sites to

learn a lot about you
v you may supply name and

e-mail to sites

aside

how to keep “state”:
v protocol endpoints: maintain state at

sender/receiver over multiple
transactions

v cookies: http messages carry state

Web caches (proxy server)

55

• user sets browser: Web
accesses via cache

• browser sends all HTTP
requests to cache
– object in cache: cache

returns object
– else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

More about Web caching

• cache acts as both client
and server
– server for original requesting

client
– client to origin server

• typically cache is installed
by ISP (university,
company, residential ISP)

why Web caching?
• reduce response time for

client request
• reduce traffic on an

institution’s access link
• Internet dense with

caches: enables “poor”
content providers to
effectively deliver content
(so too does P2P file
sharing)

56

Caching example:

57

origin
servers

public
Internet

institutional
network 100 Mbps LAN

1.54 Mbps
access link

assumptions:
v avg object size: 100K bits
v avg request rate from browsers to

origin servers:15/sec
v avg data rate to browsers: 1.50 Mbps
v RTT from institutional router to any

origin server: 2 sec
v access link rate: 1.54 Mbps

consequences:
v LAN utilization: 1.5%
v access link utilization = 97%
v total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

assumptions:
v avg object size: 100K bits
v avg request rate from browsers to

origin servers:15/sec
v avg data rate to browsers: 1.50 Mbps
v RTT from institutional router to any

origin server: 2 sec
v access link rate: 1.54 Mbps

consequences:
v LAN utilization: 1.5%
v access link utilization = 97%
v total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

58

origin
servers

1.54 Mbps
access link

154 Mbps

154 Mbps

msecs

Cost: increased access link speed (not cheap!)

0.97%

public
Internet

institutional
network 100 Mbps LAN

institutional
network 100 Mbps LAN

Caching example: install local cache

59

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
v avg object size: 100K bits
v avg request rate from browsers to

origin servers:15/sec
v avg data rate to browsers: 1.50 Mbps
v RTT from institutional router to any

origin server: 2 sec
v access link rate: 1.54 Mbps

consequences:

v LAN utilization: 1.5%
v access link utilization =
v total delay =

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Caching example: install local cache

60

Calculating access link utilization,
delay with cache:

• suppose cache hit rate is 0.4
– 40% requests satisfied at cache, 60%

requests satisfied at origin

origin
servers

1.54 Mbps
access link

v access link utilization:
§ 60% of requests use access link

v data rate to browsers over access
link = 0.6*1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58

v total delay
§ = 0.6 * (delay from origin servers)

+0.4 * (delay when satisfied at
cache)

§ = 0.6 (2.01) + 0.4 (~msecs)
§ = ~ 1.2 secs
§ less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network 100 Mbps LAN

local web
cache

Conditional GET

• Goal: don’t send object if
cache has up-to-date cached
version
– no object transmission delay
– lower link utilization

• cache: specify date of cached
copy in HTTP request
If-modified-since:
<date>

• server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

61

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

DNS: domain name system

people: many identifiers:
– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) - used

for addressing datagrams
– “name”, e.g.,

www.yahoo.com - used
by humans

Q: how to map between IP
address and name, and vice
versa?

Domain Name System:
• distributed database

implemented in hierarchy of
many name servers

• application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
– note: core Internet function,

implemented as application-
layer protocol

– complexity at network’s
“edge”

62

DNS: services, structure

DNS services
• hostname to IP address

translation
• host aliasing

– canonical, alias names

• mail server aliasing
• load distribution

– replicated Web servers:
many IP addresses
correspond to one name

why not centralize DNS?
• single point of failure
• traffic volume
• distant centralized database
• maintenance

63

A: doesn’t scale!

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

64

client wants IP for www.amazon.com; 1st approx:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

DNS: root name servers

• contacted by local name server that cannot resolve name
• root name server:

– contacts TLD name server if name mapping not known
– gets mapping
– returns mapping to local name server

65

13 root name
“servers” worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

TLD, authoritative servers

top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and all

top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for .com TLD
– Educause for .edu TLD

authoritative DNS servers:
– organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
– can be maintained by organization or service provider

66

Local DNS name server

• does not strictly belong to hierarchy
• each ISP (residential ISP, company, university) has one

– also called “default name server”

• when host makes DNS query, query is sent to its local
DNS server
– has local cache of recent name-to-address translation pairs

(but may be out of date!)
– acts as proxy, forwards query into hierarchy

• Try “nslookup <domain-name>” on a DICE machine

67

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

• host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
v contacted server

replies with name of
server to contact

v “I don’t know this
name, but ask this
server”

68

45

6

3

recursive query:
v puts burden of name

resolution on
contacted name
server

v heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

69

DNS: caching, updating records

• once (any) name server learns mapping, it caches
mapping
– cache entries timeout (disappear) after some time (TTL)
– TLD servers typically cached in local name servers

• thus root name servers not often visited

• cached entries may be out-of-date (best effort name-to-
address translation!)
– if name host changes IP address, may not be known Internet-

wide until all TTLs expire
• update/notify mechanisms proposed IETF standard

– RFC 2136

70

DNS records

71

DNS: distributed db storing resource records (RR)

type=NS
– name is domain (e.g.,

foo.com)
– value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some
“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

DNS protocol, messages

72

• query and reply messages, both with same message format

msg header
v identification: 16 bit # for query,

reply to query uses same #
v flags:

§ query or reply
§ recursion desired
§ recursion available
§ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol, messages

73

Inserting records into DNS

• example: new startup “Network Utopia”
• register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
– provide names, IP addresses of authoritative name server

(primary and secondary)
– registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

• create authoritative server type A record for
www.networkuptopia.com; type MX record for
www.networkutopia.com

74

