
 1

Computer Communications and Networks (COMN),

2019/20, Semester 2

Assignment

Overview

The overall goal of this assignment is to implement and evaluate different

protocols for achieving end­to­end reliable data transfer at the application layer

over the unreliable datagram protocol (UDP) transport protocol. In particular,

you are asked to implement in Java three different sliding window protocols –

Stop­and­Wait, Go Back N and Selective Repeat – at the application layer using UDP

sockets. Note that the stop­and­wait protocol can be viewed as a special kind of

sliding window protocol in which sender and receiver window sizes are both

equal to 1. For each of the three sliding window protocols, you will implement

the two protocol endpoints referred henceforth as sender and receiver respectively;

these endpoints also act as application programs. Data communication is

unidirectional, requiring transfer of a large file from the sender to the receiver

over a link as a sequence of smaller messages. The underlying link is assumed to

be symmetric in terms of bandwidth and delay characteristics.

To test your protocol implementations and study their performance in a

controlled environment on DICE machines, you will need to use the Dummynet

link emulator [1]. Specifically, the sender and receiver processes for each of the

three protocols will run within the same (virtual) machine and communicate with

each other over a link emulated by Dummynet. For this assignment, you only need

the basic functionality of Dummynet to emulate a link with desired characteristics

in terms of bandwidth, delay and packet loss rate.

Virtual Machine Setup

More specifically, you need to setup a virtual machine (VM) using your DICE

accounts, following the instructions in [2], to run your protocol implementations

and evaluate their performance. The VM so created (DummynetSL6) can be used

from any DICE machine and comes with Dummynet pre­installed. You will be

able to configure Dummynet using ipfw command. More on this shortly.

 2

Since DummynetSL6 VM does not include Eclipse, we suggest you develop your

protocol implementations outside it and save them within the dummynetshared

subdirectory of your assignment directory. That way, the files will be accessible

from within the VM via mount command described under “Shared folder” in [2].

You should however be able to compile and run your code from inside the VM

as the Java compiler (javac1) and application launcher (java) are installed as

part of the dummynetSL6 VM.

You can use the /work space within the dummynetSL6 VM for storing any

temporary files you would like to keep across various executions of the VM.

Link Emulation using Dummynet

Once the above one­time VM setup part is done, you can configure and use the

Dummynet to realize an emulated link between two communicating processes

(e.g., your sender and receiver programs) inside the DummynetSL6 VM. For

example, to create a symmetric 1Mbps emulated link with 5ms one­way

propagation delay (thus, 20ms in total considering both directions when the

sender and receiver are in the same host; see why in the important note section

below) and 0.5% packet loss rate for each direction (thus, 1% packet loss rate in

total), you create two dummynet pipes for each direction and configure them as

follows (as root):

% ipfw add pipe 100 in 

% ipfw add pipe 200 out 

% ipfw pipe 100 config delay 5ms plr 0.005 bw 1Mbits/s 
% ipfw pipe 200 config delay 5ms plr 0.005 bw 1Mbits/s

You can verify this configuration by using the following commands:

% ipfw list 
% ipfw pipe 100 show

% ipfw pipe 200 show

You can use the following command to flush all previous configuration rules:

1 We will only test students’ code under Java 1.6 environment, so please make sure your code compiles in

this environment. Most common and traditional packages in Java are sufficient for doing this coursework.

 3

% ipfw flush

Note that in the above, the pipe identifiers (100 and 200) are arbitrarily chosen.

You could instead use different numbers and still get the same effect. If a

configuration for a pipe needs to be updated, then you reissue the corresponding

“config” command with the modified value(s). For example, if you want the

bandwidth for pipe 200 (corresponding to the outgoing direction of traffic) to be

changed to 10Mbps instead, then you run the following command:

% ipfw pipe 200 config delay 5ms plr 0.005 bw 10Mbits/s

A few additional notes about Dummynet and DummynetSL6 VM follow. Note

that packets are not corrupted in transit (i.e., no bit errors) via the Dummynet

emulated link, so there is no need to implement error detection functionality

such as checksum at the endpoints. Whole packets, however, can be lost over

the emulated link as determined by the packet loss rate (plr) setting when

configuring the emulated link using Dummynet. For more information on

Dummynet, please refer to [1] and the Dummynet website.

Important Note: In Dummynet, a total round-trip propagation delay would be

twice as large as the specified delay when both sender and receiver are in the

same host that enforces the delay. Consider a case where a sender sends a packet

to a receiver and the receiver sends the packet back to the sender. Given that two

pipes (one “in” pipe and one “out” pipe) are enabled, the packet goes through

the “in” and “out” pipes once from the sender to the receiver, and again

traverses those two pipes when it travels back to the sender.

% ipfw pipe 100 config delay 5ms plr 0.005 bw 1Mbits/s 
% ipfw pipe 200 config delay 5ms plr 0.005 bw 1Mbits/s

Given that both sender and receiver are in the DummynetSL6 VM, a total round-

trip propagation delay is 20ms, not 10ms, in the above example. Each part of the

assignment specification below states the Dummynet configuration parameters. It

is important to set the configuration parameters as described in order to do the

assignment correctly.

Besides Dummynet, DummynetSL6 VM has other networking utilities that you

may find useful while working on this assignment. These include:

• iperf

http://info.iet.unipi.it/~luigi/dummynet/
https://github.com/esnet/iperf

 4

• thrulay

• netcat

• Wireshark

• tcpdump

Note that these tools are explicitly mentioned so that you know they are

available to use. Except for iperf, you are not required to use the rest of them for

this assignment.

Detailed Assignment Specification

The assignment needs to be done in two parts. The second part builds on the first

part. Each part is further divided into two sub­parts as detailed below.

Assignment Part 1

Part 1a: Basic framework (large file transmission under ideal conditions)

Implement sender and receiver endpoints for transferring a large file given at [3]

from the sender to the receiver on localhost over UDP as a sequence of small

messages with 1KB maximum payload (NB. 1KB = 1024 bytes) via Dummynet

emulated link with two pipes (one “in” and one “out”), each of which is

configured with 10Mbps bandwidth, 5ms one­way propagation delay and 0%

packet loss rate (i.e., no packet loss). In this configuration, a total round-trip

propagation delay is 20ms (See the Important Note part above in Link Emulation

using Dummynet section).

In the sender code, insert, at a minimum, a 10ms gap (i.e., sleep for 10ms) after

each packet transmission. The Dummynet sets a queue size of 50 as default (100

at a maximum). Because the sending rate from the sender is typically larger than

the link speed (10Mbps) specified here, the queue is likely to overflow and hence

packets losses are unavoidable. To allow the test of an ideal, reliable channel

case, the 10ms gap is suggested. If packet losses continue to occur, increase the

time gap. Note that inserting the time gap is only for Part 1a. From Part 1b

onwards, the sleeping part (the 10ms time gap) should be removed from the

sender.

http://kb.pert.geant.net/PERTKB/ThrulayTool
http://netcat.sourceforge.net/
http://www.wireshark.org/
http://www.tcpdump.org/

 5

Each data message from sender to receiver would have to be 1027 bytes long – 3

bytes for the “header” and 1024 bytes of data. The header in turn consists of 2

bytes of sequence number (for duplicate detection at the receiver) and 1 byte

end-of-file (EoF) flag to indicate the last message.

 Name the sender and receiver developed in this part as Sender1a.java and

Receiver1a.java respectively. The receiver should store the transmitted data

(after removing header from packet) into a local file (See Implementation

Guidelines section below for more details).

• Sender program must be named as specified below and must accept the

following options from the command line:
java Sender1a <RemoteHost> <Port> <Filename>

<RemoteHost> is IP address or host name for the corresponding receiver.

Note that if both sender and receiver run on the same machine,

<RemoteHost> can be specified as either 127.0.0.1 or localhost.

<Port> is the port number used by the receiver.

<Filename> is the file to transfer.

For example: java Sender1a localhost 54321 sfile

• Receiver program must be named as specified below and must accept the

following options from the command line:
java Receiver1a <Port> <Filename>

<Port> is the port number which the receiver will use for receiving

messages from the sender.

<Filename> is the name to use for the received file to save on local disk.

For example: java Receiver1a 54321 rfile

• Expected output: A successfully transferred file to the receiver; both sent and

received files must be identical at a binary level when checked using the

“diff” command.

Part 1b: Stop-and-Wait

Extend sender and receiver applications from Part 1a to implement a

stop­and­wait protocol described in section 3.4.1 in [4], specifically rdt3.0. [Hint:

You need two finite state machines (FSMs); one for rdt3.0 sender and the other

for rdt3.0 receiver. While the sender FSM is presented in [4], there is no rdt3.0

receiver FSM. The rdt3.0 receiver FSM is the rdt2.2 receiver FSM in [4]. Convince

yourself why the rdt2.2 receiver FSM is sufficient before you begin to implement

the rdt3.0 protocol. Call the resulting two applications Sender1b.java and

Receiver1b.java respectively. This part requires you to define an

acknowledgement (ACK) message that the receiver will use to inform the sender

 6

about the receipt of a data message. Discarding duplicates at the receiver end

using sequence numbers put in by the sender is also required. You can test the

working of duplicate detection functionality in your implementation by using a

small retransmission timeout on the sender side. ACK messages have to be 2

bytes each to hold the sequence number.

Using a 5% packet loss rate for each direction (i.e., pipe) and rest of Dummynet

emulated link configuration parameters as before (i.e., 10Mbps bandwidth and

5ms one­way propagation delay for each direction), experiment with different

retransmission timeouts and the corresponding number of retransmissions and

throughput.

• Sender program must be named as specified below and must accept the

following options from the command line:
java Sender1b <RemoteHost> <Port> <Filename> <RetryTimeout>

<RemoteHost> is IP address or host name for the corresponding receiver.

Note that if both sender and receiver run on the same machine,

<RemoteHost> can be specified as either 127.0.0.1 or localhost.

<Port> is the port number used by the receiver.

<Filename> is the file to transfer.

<RetryTimeout> should be a positive integer in the millisecond unit.

For example: java Sender1b localhost 54321 sfile 10

• Receiver program must be named as specified below and must accept the

following options from the command line:
java Receiver1b <Port> <Filename>

<Port> is the port number which the receiver will use for receiving

 messages from the sender.

<Filename> is the name to use for the received file to save on local disk.

For example: java Receiver1b 54321 rfile

• Expected output: (1) A successfully transferred file to the receiver; both sent

and received files must be identical at a binary level, and (2) the sender must

output number of retransmissions and throughput (in Kbytes/second) only

in a single line; no other terminal output should be displayed; the following

output implies that the number of retransmissions is 10 and the throughput

is 200 Kbytes/second:
10 200

Tabulate your observations in the space provided under Question 1 in the results

sheet for Part 1 provided at [5]. For this, your sender implementation should

count the number of retransmissions and measure average throughput (in KB/s),

which is defined as the ratio of file size (in KB) to the transfer time (in seconds).

 7

Transfer time in turn can be measured at the sender as the interval between first

message transmission time and acknowledgement receipt time for last message.

Before the sender application finishes and quits, print the average throughput

value to the standard output.

Under Question 2 in [5], discuss the impact of retransmission timeout on number

of retransmissions and throughput. Also indicate the optimal timeout value from

communication efficiency viewpoint (i.e., the timeout that minimizes the number

of retransmissions). Please clearly explain your observations.

Assignment Part 2

Part 2a: Go-Back-N

Extend Sender1b.java and Receiver1b.java from Part 1 to implement the

Go­Back­N protocol as described in section 3.4.3 of [4], by allowing the sender

window size to be greater than 1. Name the sender and receiver implementations

from this part as Sender2a.java and Receiver2a.java respectively.

• Sender program must be named as specified below and must accept the

following options from the command line:
java Sender2a <RemoteHost> <Port> <Filename> <RetryTimeout>

<WindowSize>

<RemoteHost> is IP address or host name for the corresponding receiver.

Note that if both sender and receiver run on the same machine,

<RemoteHost> can be specified as either 127.0.0.1 or localhost.

<Port> is the port number used by the receiver.

<Filename> is the file to transfer.

<RetryTimeout> should be a positive integer in the millisecond unit.

<WindowSize> should be a positive integer.

For example: java Sender2a localhost 54321 sfile 10 5

• Receiver program must be named as specified below and must accept the

following options from the command line:
java Receiver2a <Port> <Filename>

<Port> is the port number which the receiver will use for receiving

messages from the sender.

<Filename> is the name to use for the received file to save on local disk.

For example: java Receiver2a 54321 rfile

• Expected output: (1) A successfully transferred file to the receiver; both sent

and received files must be identical at a binary level, and (2) The sender must

output throughput (in Kbytes/second) only in a single line; no other terminal

 8

output should be displayed; the following output implies that the

throughput is 200 Kbytes/second:
200

Experiment with different window sizes at the sender (increasing in powers of 2

starting from 1) and different one­way propagation delay values (5ms, 25ms

and 100ms) in the emulator. For the 5ms case, use the “optimal” value for the

retransmission timeout identified from part 1b. The timeout values for the other

two cases should be justified clearly. Across all these experiments, use the

following values for the other emulated link parameters: for each direction (i.e.,

pipe), 10Mbps bandwidth and 0.5% packet loss rate. Tabulate your results

under Question 1 and answer Question 2 in the results sheet for Part 2 provided

at [6].

Part 2b: Selective Repeat

Extend Sender2a.java and Receiver2a.java to implement the selective repeat

protocol as described in section 3.4.4 of [4]. Call the resulting two applications as

Sender2b.java and Receiver2b.java respectively.

By configuring the Dummynet link with, for each direction (i.e., pipe), 10Mbps

bandwidth, 25ms one­way propagation delay and 0.5% packet loss rate,

experiment with different window size values and complete the table under

Question 3 and answer Question 4 in [6].

• Sender program must be named as specified below and must accept the

following options from the command line:
java Sender2b <RemoteHost> <Port> <Filename> <RetryTimeout>

<WindowSize>

<RemoteHost> is IP address or host name for the corresponding receiver.

Note that if both sender and receiver run on the same machine,

<RemoteHost> can be specified as either 127.0.0.1 or localhost.

<Port> is the port number used by the receiver.

<Filename> is the file to transfer.

<RetryTimeout> should be a positive integer in the millisecond unit.

<WindowSize> should be a positive integer.

For example: java Sender2b localhost 54321 sfile 10 5

• Receiver program must be named as specified below and must accept the

following options from the command line:
java Receiver2b <Port> <Filename> <WindowSize>

<Port> is the port number which the receiver will use for receiving

 messages from the sender.

 9

<Filename> is the name to use for the received file to save on local disk.

<WindowSize> should be a positive integer.

For example: java Receiver2b 54321 rfile 10

• Expected output: (1) A successfully transferred file to the receiver; both sent

and received files must be identical at a binary level, and (2) The sender must

output throughput (in Kbytes/second) only in a single line; no other terminal

output should be displayed; the following output implies that the

throughput is 200 Kbytes/second:
200

As a part of this step, also carry out an equivalent experiment using iperf with

TCP within the dummynetSL6 VM, i.e., both iperf client and server running inside

it. Use –M option in iperf to set the maximum segment size to 1KB and vary the

TCP window sizes using the –w option. Note that iperf actually allocates twice

the specified value, and uses the additional buffer for administrative purposes

and internal kernel structures. But this is normal because effectively TCP uses the

value specified as the window size for the session, which is the parameter to be

varied in this experiment. You also need to specify the file to be transferred (i.e.,

the one given at [3]) as one (-F option) of the parameters to iperf on the client side.

In addition, you should use –t option as well (refer to FAQs below for more

details). Use the results of this experiment to complete the table under Question 5

and answer Question 6 in [6].

Implementation Guidelines

Your programs must adhere to the following standard with both sender and

receiver application programs to be run inside the DummynetSL6 VM:

• As a general guideline, clearly explain any observations related to the results.

• You can choose to have common files with functions used in different parts

but you are required to submit such common files along with necessary

documentation.

• You need to take appropriate measures for terminating your sender

applications by considering cases where receiver finishes while sender

keeps waiting for acknowledgements.

• Please use comments in your code!

• Please start each source file with the following comment line:

/* Forename Surname MatriculationNumber */

For example: /* John Doe 1234567 */

 10

Submission

Submission deadlines for this assignment are as follows:

• Part 1 due by 4pm on Friday, 14th February 2020:

For Part 1, you must submit an electronic version of your implementations

for Parts 1a and 1b (Sender1a.java, Receiver1a.java, Sender1b.java,

Receiver1b.java and any common files) and completed results sheet [5] (as

PDF). Use the following submit command:

submit comn cw1 <directory­name>

• Part 2 due by 4pm on Friday, 20th March 2020 Friday, 27th March 2020:

For Part 2, you must submit an electronic version of your implementations

for Parts 2a and 2b (Sender2a.java, Receiver2a.java, Sender2b.java,

Receiver2b.java and any common files), and completed results sheet [6] (as

PDF). Use the following submit command:

submit comn cw2 <directory­name>

Additional instruction on submission: Put all the files under the specified

directory, <directory­name>. DO NOT create any new directory in that

directory. For example, suppose that Sender1a.java, Receiver1a.java,

Sender1b.java, Receiver1b.java and part1_results.pdf should be submitted, and

<directory­name> is part1. Then, put all the files in “part1” and run the

following:
submit comn cw1 part1

Late submissions of coursework will be dealt with as per the School of

Informatics policy on late submission of coursework.

You are expected to work on this assignment on your own. Or else, you will be

committing plagiarism (see School of Informatics guidelines on academic

misconduct).

Assessment  

http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

 11

This assignment accounts for the whole of your coursework mark (or, 40% of the

overall course mark). Distribution of marks among the different parts (as

percentage of the coursework mark) is given below:

• Part 1 (30%)

o Part 1a (10%)

o Part 1b (20%)

• Part 2 (70%)

o Part 2a (30%)

o Part 2b (40%)

References

1. M. Carbone and L. Rizzo, “Dummynet Revisited,” SIGCOMM Computer

Communication Review, Vol. 40, No. 2, pp. 12­20 Apr 2010.

2. VirtualBox VM Setup Instructions

3. Test file

4. J. F. Kurose and K. W. Ross, “Computer Networking: A Top­Down

Approach” (7th  edition), Pearson Education, 2017.

5. Part 1 Results Sheet

6. Part 2 Results Sheet

7. FAQs

http://ccr.sigcomm.org/online/files/p13-15v40n2e-carboneA.pdf
http://www.inf.ed.ac.uk/teaching/courses/comn/coursework/vbox-vm-instructions.pdf
http://www.inf.ed.ac.uk/teaching/courses/comn/coursework/test.jpg
http://www.inf.ed.ac.uk/teaching/courses/comn/coursework/part1-results.doc
http://www.inf.ed.ac.uk/teaching/courses/comn/coursework/part2-results.doc
http://www.inf.ed.ac.uk/teaching/courses/comn/coursework/FAQs.pdf

