
Communication and Concurrency
Lecture 7

Colin Stirling (cps)

School of Informatics

10th October 2013

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler of Lecture 4)

I This property cannot be formalised in CTL−

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P, defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.
Example: when using telnet our machine should “behave
like” the remote machine (abstracting from delays).

I But how to formalise “behavioural equivalence”?

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler of Lecture 4)

I This property cannot be formalised in CTL−

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P, defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.
Example: when using telnet our machine should “behave
like” the remote machine (abstracting from delays).

I But how to formalise “behavioural equivalence”?

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler of Lecture 4)

I This property cannot be formalised in CTL−

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P, defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.
Example: when using telnet our machine should “behave
like” the remote machine (abstracting from delays).

I But how to formalise “behavioural equivalence”?

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler of Lecture 4)

I This property cannot be formalised in CTL−

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P, defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.
Example: when using telnet our machine should “behave
like” the remote machine (abstracting from delays).

I But how to formalise “behavioural equivalence”?

Process equivalence: motivation

I “The sequence of actions a1 . . . an must be carried out
cyclically starting with a1” (the scheduler of Lecture 4)

I This property cannot be formalised in CTL−

I More natural way of specifying this:
When all actions but a1, . . . , an are restricted, the system
should “behave like” the process P, defined by

P
def
= a1.a2.an.P

I Generally: many systems are informally specified by “behave
like” statements.
Example: when using telnet our machine should “behave
like” the remote machine (abstracting from delays).

I But how to formalise “behavioural equivalence”?

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

Wish list

1. Behavioural equivalence should be an equivalence relation,
reflexive, symmetric and transitive.

2. Processes that may terminate (deadlock) should not be
equivalent to processes that may not terminate (deadlock).

3. Congruence: if a component Q of P is replaced by an
equivalent component Q ′ yielding P ′, then P and P ′ should
also be equivalent.

4. Two processes should be equivalent iff they satisfy exactly the
same properties (such as expressible in modal or temporal
logic)

5. It should abstract from silent actions.

We deal first with conditions 1− 4

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w−→ F for some process F .

I E and F are trace equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

I Counterexample. Cl, Cl′ trace equivalent

Cl
def
= tick.Cl

Cl′ def
= tick.Cl′ + tick.0

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w−→ F for some process F .

I E and F are trace equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

I Counterexample. Cl, Cl′ trace equivalent

Cl
def
= tick.Cl

Cl′ def
= tick.Cl′ + tick.0

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w−→ F for some process F .

I E and F are trace equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

I Counterexample. Cl, Cl′ trace equivalent

Cl
def
= tick.Cl

Cl′ def
= tick.Cl′ + tick.0

A first candidate: trace equivalence

I A trace of a process E is a sequence w of actions such that
E

w−→ F for some process F .

I E and F are trace equivalent if they have the same traces.

I This notion satisfies 1 and 3, but not 2.

I Counterexample. Cl, Cl′ trace equivalent

Cl
def
= tick.Cl

Cl′ def
= tick.Cl′ + tick.0

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

I Ven1 and Ven2 are completed-trace equivalent, but
(Ven1 | Use)\K and (Ven2 | Use)\K , where
K = {1p, tea, coffee}, are not.

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

I Ven1 and Ven2 are completed-trace equivalent, but
(Ven1 | Use)\K and (Ven2 | Use)\K , where
K = {1p, tea, coffee}, are not.

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

I Ven1 and Ven2 are completed-trace equivalent, but
(Ven1 | Use)\K and (Ven2 | Use)\K , where
K = {1p, tea, coffee}, are not.

A second candidate: completed trace equivalence

I A completed trace of E is a sequence w of actions such that
E

w−→ F for some process F that cannot execute any action

I E and F are completed trace equivalent if they have the same
traces and the same completed traces

I This notion satisfies 1 and 2, but not 3.

Ven1
def
= 1p.1p.(tea.Ven1 + coffee.Ven1)

Ven2
def
= 1p.(1p.tea.Ven2 + 1p.coffee.Ven2)

Use
def
= 1p.1p.tea.ok.0

I Ven1 and Ven2 are completed-trace equivalent, but
(Ven1 | Use)\K and (Ven2 | Use)\K , where
K = {1p, tea, coffee}, are not.

