Communication and Concurrency Lecture 6

Colin Stirling (cps)

School of Informatics

7th October 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A formula can be

► a formula of Hennessy-Milner logic,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- a formula of Hennessy-Milner logic,
- ▶ a formula AG Φ , read as "always Φ " or "globally Φ ,"

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- a formula of Hennessy-Milner logic,
- a formula AG Φ, read as "always Φ" or "globally Φ,"
- ▶ a formula EF Φ , read as "possibly Φ ,"

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- a formula of Hennessy-Milner logic,
- ▶ a formula AG Φ , read as "always Φ " or "globally Φ ,"
- a formula EF Φ, read as "possibly Φ,"
- > a formula AF Φ , read as "eventually Φ ,"

- a formula of Hennessy-Milner logic,
- a formula AG Φ, read as "always Φ" or "globally Φ,"
- a formula EF Φ, read as "possibly Φ,"
- > a formula AF Φ , read as "eventually Φ ,"
- a formula EG Φ, read as "EG Φ."

Temporal logic CTL⁻: semantics

A run (of a process E_0) is a sequence of transitions of the form

 $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} E_2 \xrightarrow{a_3} \cdots$

which is "maximal" in the sense that if it is finite then the final process is unable to do any action.

Temporal logic CTL⁻: semantics

A run (of a process E_0) is a sequence of transitions of the form

 $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} E_2 \xrightarrow{a_3} \cdots$

which is "maximal" in the sense that if it is finite then the final process is unable to do any action.

$$\begin{split} E_0 &\models \operatorname{AG} \Phi \quad \text{iff} \quad \text{for all runs } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ & \text{for all } i \geq 0, \ E_i \models \Phi \\ E_0 &\models \operatorname{EF} \Phi \quad \text{iff} \quad \text{for some run } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ & \text{for some } i \geq 0, \ E_i \models \Phi \\ E_0 &\models \operatorname{AF} \Phi \quad \text{iff} \quad \text{for all runs } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ & \text{for some } i \geq 0, \ E_i \models \Phi \\ E_0 &\models \operatorname{EG} \Phi \quad \text{iff} \quad \text{for some run } E_0 \stackrel{a_1}{\longrightarrow} E_1 \stackrel{a_2}{\longrightarrow} \cdots, \\ & \text{for all } i \geq 0, \ E_i \models \Phi \end{split}$$

• $E_0 \models AG \Phi$ means "all processes reachable from E_0 satisfy Φ ."

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- $E_0 \models AG \Phi$ means "all processes reachable from E_0 satisfy Φ ."
- ► $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ ."

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $E_0 \models AG \Phi$ means "all processes reachable from E_0 satisfy Φ ."
- $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ ."
- ► $E_0 \models AF \Phi$ means "eventually a process will be reached which satisfies Φ ."

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $E_0 \models AG \Phi$ means "all processes reachable from E_0 satisfy Φ ."
- $E_0 \models \text{EF } \Phi$ means "some process reachable from E_0 satisfies Φ ."
- ► $E_0 \models AF \Phi$ means "eventually a process will be reached which satisfies Φ ."

• $E_0 \models \text{EG } \Phi$ means "some run always satisfies Φ ."

$$\blacktriangleright E_0 \models \texttt{AG} \langle - \rangle \texttt{tt}$$

<□ > < @ > < E > < E > E のQ @

 $\blacktriangleright \ E_0 \models \texttt{AG} \ \langle - \rangle \texttt{tt}$

All processes reachable from E₀ can do some action.
 E₀ is *deadlock-free*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\blacktriangleright \ E_0 \models \texttt{AG} \ \langle \rangle \texttt{tt}$
- All processes reachable from E₀ can do some action.
 E₀ is *deadlock-free*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ $E_0 \models \texttt{AF}[-]\texttt{ff}$

- $\blacktriangleright \ E_0 \models \texttt{AG} \ \langle \rangle \texttt{tt}$
- All processes reachable from E₀ can do some action.
 E₀ is *deadlock-free*.
- ▶ $E_0 \models \texttt{AF}[-]\texttt{ff}$
- Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.

- $\blacktriangleright \ E_0 \models \texttt{AG} \ \langle \rangle \texttt{tt}$
- All processes reachable from E₀ can do some action.
 E₀ is *deadlock-free*.
- ▶ $E_0 \models \texttt{AF}[-]\texttt{ff}$
- Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.

• AG [request]AF ($\langle granted \rangle tt \land [-granted]ff$)

- $E_0 \models \operatorname{AG} \langle \rangle \operatorname{tt}$
- All processes reachable from E₀ can do some action.
 E₀ is *deadlock-free*.
- ▶ $E_0 \models \texttt{AF}[-]\texttt{ff}$
- Eventually a process is reached which cannot execute any action. *E* is guaranteed to terminate.

- AG [request]AF ($\langle granted \rangle tt \land [-granted]ff$)
- All requests will eventually be granted

Exercise

$$P \stackrel{\text{def}}{=} a.P + b.Q \qquad Q \stackrel{\text{def}}{=} c.Q$$

Does $P \models \Phi$ hold when Φ is

	Y/N
EF $\langle c \rangle$ tt	<u></u>
AG $\langle c \rangle$ tt	
AF $\langle c \rangle$ tt	
EG $\langle c \rangle$ tt	
AG EF $\langle c \rangle$ tt	
AF EG $\langle c \rangle$ tt	
EF AG $\langle c \rangle$ tt	
EG AF $\langle c \rangle$ tt	

Exercise

$$P \stackrel{\text{def}}{=} a.P + b.Q \qquad Q \stackrel{\text{def}}{=} c.Q$$

Does $P \models \Phi$ hold when Φ is

	Y/N
EF $\langle c \rangle$ tt	Y
AG $\langle c \rangle$ tt	Ν
AF $\langle c \rangle$ tt	Ν
EG $\langle c \rangle$ tt	Ν
AG EF $\langle c \rangle$ tt	Y
AF EG $\langle c \rangle$ tt	Ν
EF AG $\langle c \rangle$ tt	Y
EG AF $\langle c \rangle$ tt	Ν

Example: Peterson's solution to mutual exclusion

B1f B1t	=	$ \overline{ \frac{b1rf}{b1rt}}.B1f + b1wf.B1f + b1wt.B1t \\ \overline{b1rt}.B1t + b1wt.B1t + b1wf.B1f $
B2f B2t	=	$\overline{\frac{b2rf}{b2rt}.B2f} + b2wf.B2f + b2wt.B2t} \\ \overline{b2rt}.B2t + b2wt.B2t + b2wf.B2f}$
K1 K2	=	$\label{eq:kr1} \begin{array}{l} \hline kr1.K1 + kw1.K1 + kw2.K2 \\ \hline kr2.K2 + kw2.K2 + kw1.K1 \end{array}$
P1 P11 P12	= =	$\label{eq:bilder} \begin{array}{l} \overline{b1wt}. reql. \overline{kw2}. P11 \\ b2rt. P11 + b2rf. P12 + kr2. P11 + \\ kr1. P12 \\ enter1.exit1. \overline{b1wf.} P1 \end{array}$
P2 P21 P22	= = =	$\label{eq:bound} \begin{array}{l} \overline{b2wt.req2.kw1.P21} \\ b1rf.P22 + b1rt.P21 + kr1.P21 + kr2.P22 \\ enter2.exit2.\overline{b2wf}.P2 \end{array}$
Peterson	=	(P1 P2 K1 B1f B2f) \ <i>L</i>

Mutual exclusion

- Mutual exclusion
- Absence of deadlock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Mutual exclusion
- Absence of deadlock
- Absence of starvation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Absence of deadlock
- Absence of starvation

• Mutual exclusion AG ($[exit1]ff \lor [exit2]ff$)

- Absence of deadlock AG $\langle \rangle$ tt
- Absence of starvation

- ► Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)
- Absence of deadlock AG $\langle \rangle$ tt
- ► Absence of starvation (for P1) AG ([req1]AF ⟨exit1⟩tt)

Negation

Negation is also redundant in CTL⁻: For every formula Φ of CTL⁻ there is a formula Φ^c such that for every process *E*

 $E \models \Phi^c$ iff $E \not\models \Phi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Negation

Negation is also redundant in CTL⁻: For every formula Φ of CTL⁻ there is a formula Φ^c such that for every process *E*

 $E \models \Phi^c$ iff $E \not\models \Phi$

 Φ^c is inductively defined as for HML, plus:

$(AG \Phi)^c$	=	ΕF Φ ^c
$(EF \Phi)^c$	=	AG Φ^c
$(AF \Phi)^c$	=	EG Φ^c
$(EG \Phi)^c$	=	AF Φ^c

Proposition For every E_0 and for every Φ of CTL⁻:

 $E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$.

Proposition For every E_0 and for every Φ of CTL⁻:

 $E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof: By induction on the structure of Φ .

Proposition For every E_0 and for every Φ of CTL⁻:

 $E_0 \models \Phi^c \text{ iff } E_0 \not\models \Phi$.

Proof: By induction on the structure of Φ . Case $\Phi = AG \Phi_1$.

 $\begin{array}{ll} E_0 \models (\operatorname{AG} \Phi_1)^c \\ \mathrm{iff} & E_0 \models \operatorname{EF} \Phi_1^c \\ \mathrm{iff} & \text{for some run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots, \\ \mathrm{for some } i \ge 0 \ \mathrm{s.t.} \ E_i \models \Phi_1^c \\ \mathrm{iff} & \text{for some run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots, \\ \mathrm{for some } i \ge 0 \ \mathrm{s.t.} \ E_i \not\models \Phi_1 \\ \mathrm{iff} & \mathrm{not for all run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots, \\ \mathrm{for all } i \ge 0 \ \mathrm{s.t.} \ E_i \models \Phi_1 \\ \mathrm{iff} & E_0 \not\models \operatorname{AG} \Phi_1 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

► A formula is satisfiable (realisable) if some process satisfies it.

(ロ)、(型)、(E)、(E)、 E) の(の)

► A formula is satisfiable (realisable) if some process satisfies it.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► A formula is unsatisfiable if no process satisfies it.

A formula is satisfiable (realisable) if some process satisfies it.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► A formula is unsatisfiable if no process satisfies it.
- A formula is valid all processes satisfy it.

- A formula is satisfiable (realisable) if some process satisfies it.
- ► A formula is unsatisfiable if no process satisfies it.
- A formula is valid all processes satisfy it.
- Two formulas are equivalent if they are satisfied by exactly the same processes.

Which of the following are valid?

	Y/N
$\texttt{AG}\ \Phi \to \texttt{AF}\ \Phi$	
$\texttt{AF}\ \Phi \to \texttt{AG}\ \Phi$	
$\texttt{AG}\ \Phi \to \texttt{EG}\ \Phi$	
$\texttt{EG}\ \Phi \to \texttt{AG}\ \Phi$	
$\texttt{AF} \ \Phi \to \texttt{EF} \ \Phi$	
$\texttt{EF} \ \Phi \to \texttt{AF} \ \Phi$	
$\texttt{EG}\ \Phi \to \texttt{EF}\ \Phi$	
$\texttt{EF}\ \Phi \to \texttt{EG}\ \Phi$	
$\texttt{AF}\ \Phi \to \texttt{EG}\ \Phi$	
$\texttt{EG}\ \Phi \to \texttt{AF}\ \Phi$	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Which of the following are valid?

	Y/N
$\fbox{AG} \Phi \rightarrow \texttt{AF} \Phi$	Y
$\texttt{AF}\ \Phi \to \texttt{AG}\ \Phi$	N
$\texttt{AG}\ \Phi \to \texttt{EG}\ \Phi$	Y
$\texttt{EG}\ \Phi \to \texttt{AG}\ \Phi$	N
$\texttt{AF} \ \Phi \to \texttt{EF} \ \Phi$	Y
$\texttt{EF} \ \Phi \to \texttt{AF} \ \Phi$	N
$EG\ \Phi\toEF\ \Phi$	Y
$\texttt{EF}\ \Phi \to \texttt{EG}\ \Phi$	N
$\texttt{AF} \ \Phi \to \texttt{EG} \ \Phi$	N
$\texttt{EG}\ \Phi \to \texttt{AF}\ \Phi$	Y

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Exercise

Which of the following are equivalent when $\Phi, \, \Phi_1$ and Φ_2 are arbitrary formulas of CTL $^-?$

		Y/N
$\texttt{AG}\left(\Phi_{1} \land \Phi_{2} \right)$	$\texttt{AG} \ \Phi_1 \land \texttt{AG} \ \Phi_2$	
$\texttt{EF}\left(\Phi_{1}\wedge\Phi_{2}\right)$	$\texttt{EF} \ \Phi_1 \land \texttt{EF} \ \Phi_2$	
$\texttt{AF}\left(\Phi_{1}\land\Phi_{2}\right)$	$\texttt{AF} \ \Phi_1 \land \texttt{AF} \ \Phi_2$	
AG AG Φ	AG Φ	
AF AF Φ	AF Φ	
ef ef φ	ef Φ	
AG EF AG Φ	AG EF Φ	
AG EF AG EF Φ	AG EF Φ	

Exercise

Which of the following are equivalent when $\Phi, \, \Phi_1$ and Φ_2 are arbitrary formulas of CTL $^-?$

		Y/N
$\fbox{AG} (\Phi_1 \land \Phi_2)$	$\texttt{AG} \ \Phi_1 \land \texttt{AG} \ \Phi_2$	Y
$\texttt{EF}\left(\Phi_{1} \land \Phi_{2} \right)$	$\texttt{EF} \ \Phi_1 \land \texttt{EF} \ \Phi_2$	N
$\texttt{AF}\left(\Phi_{1}\land\Phi_{2}\right)$	$\texttt{AF} \ \Phi_1 \land \texttt{AF} \ \Phi_2$	N
AG AG Φ	AG Φ	Y
AF AF Φ	AF Φ	Y
ef ef Φ	ef Φ	Y
AG EF AG Φ	AG EF Φ	N
AG EF AG EF Φ	AG EF Φ	Y