
Communication and Concurrency
Lecture 6

Colin Stirling (cps)

School of Informatics

7th October 2013

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: syntax

Φ ::= tt | ff | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | 〈K 〉Φ
AG Φ | EF Φ | AF Φ | EG Φ

A formula can be

I a formula of Hennessy-Milner logic,

I a formula AG Φ, read as “always Φ” or “globally Φ,”

I a formula EF Φ, read as “possibly Φ,”

I a formula AF Φ, read as “eventually Φ,”

I a formula EG Φ, read as “EG Φ.”

Temporal logic CTL−: semantics

A run (of a process E0) is a sequence of transitions of the form

E0
a1−→ E1

a2−→ E2
a3−→ · · ·

which is “maximal” in the sense that if it is finite then the final
process is unable to do any action.

E0 |= AG Φ iff for all runs E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0, Ei |= Φ

E0 |= EF Φ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= Φ

E0 |= AF Φ iff for all runs E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= Φ

E0 |= EG Φ iff for some run E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0, Ei |= Φ

Temporal logic CTL−: semantics

A run (of a process E0) is a sequence of transitions of the form

E0
a1−→ E1

a2−→ E2
a3−→ · · ·

which is “maximal” in the sense that if it is finite then the final
process is unable to do any action.

E0 |= AG Φ iff for all runs E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0, Ei |= Φ

E0 |= EF Φ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= Φ

E0 |= AF Φ iff for all runs E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= Φ

E0 |= EG Φ iff for some run E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0, Ei |= Φ

Intuitive meaning

I E0 |= AG Φ means “all processes reachable from E0 satisfy Φ.”

I E0 |= EF Φ means “some process reachable from E0 satisfies
Φ.”

I E0 |= AF Φ means “eventually a process will be reached which
satisfies Φ.”

I E0 |= EG Φ means “some run always satisfies Φ.”

Intuitive meaning

I E0 |= AG Φ means “all processes reachable from E0 satisfy Φ.”

I E0 |= EF Φ means “some process reachable from E0 satisfies
Φ.”

I E0 |= AF Φ means “eventually a process will be reached which
satisfies Φ.”

I E0 |= EG Φ means “some run always satisfies Φ.”

Intuitive meaning

I E0 |= AG Φ means “all processes reachable from E0 satisfy Φ.”

I E0 |= EF Φ means “some process reachable from E0 satisfies
Φ.”

I E0 |= AF Φ means “eventually a process will be reached which
satisfies Φ.”

I E0 |= EG Φ means “some run always satisfies Φ.”

Intuitive meaning

I E0 |= AG Φ means “all processes reachable from E0 satisfy Φ.”

I E0 |= EF Φ means “some process reachable from E0 satisfies
Φ.”

I E0 |= AF Φ means “eventually a process will be reached which
satisfies Φ.”

I E0 |= EG Φ means “some run always satisfies Φ.”

Examples

I E0 |= AG 〈−〉tt

I All processes reachable from E0 can do some action.
E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Examples

I E0 |= AG 〈−〉tt
I All processes reachable from E0 can do some action.

E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Examples

I E0 |= AG 〈−〉tt
I All processes reachable from E0 can do some action.

E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Examples

I E0 |= AG 〈−〉tt
I All processes reachable from E0 can do some action.

E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Examples

I E0 |= AG 〈−〉tt
I All processes reachable from E0 can do some action.

E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Examples

I E0 |= AG 〈−〉tt
I All processes reachable from E0 can do some action.

E0 is deadlock-free.

I E0 |= AF [−]ff

I Eventually a process is reached which cannot execute any
action. E is guaranteed to terminate.

I AG [request]AF (〈granted〉tt ∧ [−granted]ff)

I All requests will eventually be granted

Exercise

P
def
= a.P + b.Q Q

def
= c.Q

Does P |= Φ hold when Φ is

Y/N

EF 〈c〉tt

AG 〈c〉tt

AF 〈c〉tt

EG 〈c〉tt

AG EF 〈c〉tt

AF EG 〈c〉tt

EF AG 〈c〉tt

EG AF 〈c〉tt

Exercise

P
def
= a.P + b.Q Q

def
= c.Q

Does P |= Φ hold when Φ is

Y/N

EF 〈c〉tt Y

AG 〈c〉tt N

AF 〈c〉tt N

EG 〈c〉tt N

AG EF 〈c〉tt Y

AF EG 〈c〉tt N

EF AG 〈c〉tt Y

EG AF 〈c〉tt N

Example: Peterson’s solution to mutual exclusion

B1f = b1rf.B1f + b1wf.B1f + b1wt.B1t

B1t = b1rt.B1t + b1wt.B1t + b1wf.B1f

B2f = b2rf.B2f + b2wf.B2f + b2wt.B2t

B2t = b2rt.B2t + b2wt.B2t + b2wf.B2f

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw2.K2 + kw1.K1

P1 = b1wt.req1.kw2.P11
P11 = b2rt.P11 + b2rf.P12 + kr2.P11 +

kr1.P12

P12 = enter1.exit1.b1wf.P1

P2 = b2wt.req2.kw1.P21
P21 = b1rf.P22 + b1rt.P21 + kr1.P21 +

kr2.P22

P22 = enter2.exit2.b2wf.P2

Peterson = (P1 | P2 | K1 | B1f | B2f) \L

Specification: temporal properties

I Mutual exclusion

AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock

AG 〈−〉tt

I Absence of starvation

(for P1) AG ([req1]AF 〈exit1〉tt)

Specification: temporal properties

I Mutual exclusion

AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock

AG 〈−〉tt
I Absence of starvation

(for P1) AG ([req1]AF 〈exit1〉tt)

Specification: temporal properties

I Mutual exclusion

AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock

AG 〈−〉tt

I Absence of starvation

(for P1) AG ([req1]AF 〈exit1〉tt)

Specification: temporal properties

I Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock

AG 〈−〉tt

I Absence of starvation

(for P1) AG ([req1]AF 〈exit1〉tt)

Specification: temporal properties

I Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock AG 〈−〉tt
I Absence of starvation

(for P1) AG ([req1]AF 〈exit1〉tt)

Specification: temporal properties

I Mutual exclusion AG ([exit1]ff ∨ [exit2]ff)

I Absence of deadlock AG 〈−〉tt
I Absence of starvation (for P1) AG ([req1]AF 〈exit1〉tt)

Negation

Negation is also redundant in CTL−: For every formula Φ of CTL−

there is a formula Φc such that for every process E

E |= Φc iff E 6|= Φ

Φc is inductively defined as for HML, plus:

(AG Φ)c = EF Φc

(EF Φ)c = AG Φc

(AF Φ)c = EG Φc

(EG Φ)c = AF Φc

Negation

Negation is also redundant in CTL−: For every formula Φ of CTL−

there is a formula Φc such that for every process E

E |= Φc iff E 6|= Φ

Φc is inductively defined as for HML, plus:

(AG Φ)c = EF Φc

(EF Φ)c = AG Φc

(AF Φ)c = EG Φc

(EG Φ)c = AF Φc

Proposition For every E0 and for every Φ of CTL−:

E0 |= Φc iff E0 6|= Φ .

Proof: By induction on the structure of Φ.
Case Φ = AG Φ1.

E0 |= (AG Φ1)c

iff E0 |= EF Φc
1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei |= Φc

1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei 6|= Φ1

iff not for all run E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0 s.t. Ei |= Φ1

iff E0 6|= AG Φ1

Proposition For every E0 and for every Φ of CTL−:

E0 |= Φc iff E0 6|= Φ .

Proof: By induction on the structure of Φ.

Case Φ = AG Φ1.

E0 |= (AG Φ1)c

iff E0 |= EF Φc
1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei |= Φc

1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei 6|= Φ1

iff not for all run E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0 s.t. Ei |= Φ1

iff E0 6|= AG Φ1

Proposition For every E0 and for every Φ of CTL−:

E0 |= Φc iff E0 6|= Φ .

Proof: By induction on the structure of Φ.
Case Φ = AG Φ1.

E0 |= (AG Φ1)c

iff E0 |= EF Φc
1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei |= Φc

1

iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0 s.t. Ei 6|= Φ1

iff not for all run E0
a1−→ E1

a2−→ · · · ,
for all i ≥ 0 s.t. Ei |= Φ1

iff E0 6|= AG Φ1

Satisfiability, validity, equivalence

I A formula is satisfiable (realisable) if some process satisfies it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes.

Satisfiability, validity, equivalence

I A formula is satisfiable (realisable) if some process satisfies it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes.

Satisfiability, validity, equivalence

I A formula is satisfiable (realisable) if some process satisfies it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes.

Satisfiability, validity, equivalence

I A formula is satisfiable (realisable) if some process satisfies it.

I A formula is unsatisfiable if no process satisfies it.

I A formula is valid all processes satisfy it.

I Two formulas are equivalent if they are satisfied by exactly the
same processes.

Which of the following are valid?

Y/N

AG Φ→ AF Φ

AF Φ→ AG Φ

AG Φ→ EG Φ

EG Φ→ AG Φ

AF Φ→ EF Φ

EF Φ→ AF Φ

EG Φ→ EF Φ

EF Φ→ EG Φ

AF Φ→ EG Φ

EG Φ→ AF Φ

Which of the following are valid?

Y/N

AG Φ→ AF Φ Y

AF Φ→ AG Φ N

AG Φ→ EG Φ Y

EG Φ→ AG Φ N

AF Φ→ EF Φ Y

EF Φ→ AF Φ N

EG Φ→ EF Φ Y

EF Φ→ EG Φ N

AF Φ→ EG Φ N

EG Φ→ AF Φ Y

Exercise

Which of the following are equivalent when Φ, Φ1 and Φ2 are
arbitrary formulas of CTL−?

Y/N

AG (Φ1 ∧ Φ2) AG Φ1 ∧ AG Φ2

EF (Φ1 ∧ Φ2) EF Φ1 ∧ EF Φ2

AF (Φ1 ∧ Φ2) AF Φ1 ∧ AF Φ2

AG AG Φ AG Φ

AF AF Φ AF Φ

EF EF Φ EF Φ

AG EF AG Φ AG EF Φ

AG EF AG EF Φ AG EF Φ

Exercise

Which of the following are equivalent when Φ, Φ1 and Φ2 are
arbitrary formulas of CTL−?

Y/N

AG (Φ1 ∧ Φ2) AG Φ1 ∧ AG Φ2 Y

EF (Φ1 ∧ Φ2) EF Φ1 ∧ EF Φ2 N

AF (Φ1 ∧ Φ2) AF Φ1 ∧ AF Φ2 N

AG AG Φ AG Φ Y

AF AF Φ AF Φ Y

EF EF Φ EF Φ Y

AG EF AG Φ AG EF Φ N

AG EF AG EF Φ AG EF Φ Y

