Communication and Concurrency Lecture 5

Colin Stirling (cps)

School of Informatics

3rd October 2013

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\textit{K}] \Phi \mid \langle \textit{K} \rangle \Phi$$

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi$$

- ▶ the constant true formula tt
- the constant false formula ff,

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi$$

- the constant true formula tt
- the constant false formula ff,
- ▶ a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- ▶ a disjunction of formulas $\Phi_1 \vee \Phi_2$,

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi$$

- the constant true formula tt
- the constant false formula ff,
- ▶ a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- ▶ a disjunction of formulas $\Phi_1 \vee \Phi_2$,
- ▶ a formula $[K]\Phi$, where K is any set of actions, read as "box K Φ ", or "for all K-derivatives Φ ,"

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [\mathit{K}] \Phi \mid \langle \mathit{K} \rangle \Phi$$

- the constant true formula tt
- the constant false formula ff,
- ▶ a conjunction of formulas $\Phi_1 \wedge \Phi_2$
- ▶ a disjunction of formulas $\Phi_1 \vee \Phi_2$,
- ▶ a formula $[K]\Phi$, where K is any set of actions, read as "box K Φ ", or "for all K-derivatives Φ ,"
- ▶ a formula $\langle K \rangle \Phi$, where K is any set of actions, read as "diamond $K \Phi$ ", or "for some K-derivative Φ ."

$$ightharpoonup E \models \mathsf{tt} \quad E \not\models \mathsf{ff}$$

- $ightharpoonup E \models \mathsf{tt} \quad E \not\models \mathsf{ff}$
- $ightharpoonup E \models \Phi \wedge \Psi \text{ iff } E \models \Phi \text{ and } E \models \Psi$
- ▶ $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$

- ▶ $E \models \mathsf{tt}$ $E \not\models \mathsf{ff}$
- ▶ $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- \triangleright $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- ▶ $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$

- $ightharpoonup E \models \mathsf{tt} \quad E \not\models \mathsf{ff}$
- $ightharpoonup E \models \Phi \wedge \Psi \text{ iff } E \models \Phi \text{ and } E \models \Psi$
- ▶ $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- ▶ $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- ▶ $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$

- $ightharpoonup E \models \mathsf{tt} \quad E \not\models \mathsf{ff}$
- \blacktriangleright $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- \triangleright $E \models \Phi \lor \Psi$ iff $E \models \Phi$ or $E \models \Psi$
- ▶ $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- ▶ $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- A process E has the property [K]Φ if every process which E evolves to after carrying out any action in K has the property Φ

- $ightharpoonup E \models \mathsf{tt} \quad E \not\models \mathsf{ff}$
- \blacktriangleright $E \models \Phi \land \Psi$ iff $E \models \Phi$ and $E \models \Psi$
- $ightharpoonup E \models \Phi \lor \Psi \text{ iff } E \models \Phi \text{ or } E \models \Psi$
- ▶ $E \models [K]\Phi$ iff $\forall F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- ▶ $E \models \langle K \rangle \Phi$ iff $\exists F \in \{E' : E \xrightarrow{a} E' \text{ and } a \in K\}$. $F \models \Phi$
- A process E has the property [K]Φ if every process which E evolves to after carrying out any action in K has the property Φ
- ▶ A process E satisfies $\langle K \rangle \Phi$ if E can become a process that satisfies Φ by carrying out an action in K

▶ $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock
- ► $E \models \langle \{ \text{tick}, \text{tock} \} \rangle \text{tt}$ E can do a tick or a tock

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock
- ► $E \models \langle \{ \text{tick}, \text{tock} \} \rangle \text{tt}$ E can do a tick or a tock
- ► E |= [tick]ff
 E cannot do a tick

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock
- ► $E \models \langle \{ \text{tick}, \text{tock} \} \rangle \text{tt}$ E can do a tick or a tock
- ► E |= [tick]ff
 E cannot do a tick
- ► $E \models \langle \text{tick} \rangle \text{ff}$ This is equivalent to ff!

- $E \models \langle \text{tick} \rangle \text{tt}$ E can do a tick
- ► $E \models \langle \text{tick} \rangle \langle \text{tock} \rangle \text{tt}$ E can do a tick and then a tock
- ► $E \models \langle \{ \text{tick}, \text{tock} \} \rangle \text{tt}$ E can do a tick or a tock
- ► E |= [tick]ff
 E cannot do a tick
- ► $E \models \langle \text{tick} \rangle \text{ff}$ This is equivalent to ff!
- ► E | [tick]tt
 This is equivalent to true!

$$\mathtt{Cl} \overset{\mathrm{def}}{=} \mathtt{tick.Cl}$$

$$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$$

Does C1 have the property: $[tick](\langle tick \rangle tt \land [tock]ff)$?

 $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$

$$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$$

- ▶ $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : \mathtt{Cl} \xrightarrow{\mathtt{tick}} E\}$. $F \models \langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}] \mathtt{ff}$

$$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : Cl \xrightarrow{\text{tick}} E\}. F \models \langle \text{tick} \rangle \text{tt} \land [\text{tock}] \text{ff}$
- iff $C1 \models \langle tick \rangle tt \land [tock]ff$

$$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : C1 \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : \mathtt{Cl} \xrightarrow{\mathtt{tick}} E\}$. $F \models \langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}] \mathtt{ff}$
- iff $Cl \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : C1 \xrightarrow{\text{tick}} E\} \text{ and } C1 \models [\text{tock}]ff$

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : \mathtt{Cl} \xrightarrow{\mathtt{tick}} E\}$. $F \models \langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}] \mathtt{ff}$
- iff $C1 \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : C1 \xrightarrow{\texttt{tick}} E\} \text{ and } C1 \models [\texttt{tock}]ff$
- iff $\exists F \in \{\text{Cl}\} \text{ and } \text{Cl} \models [\text{tock}] \text{ff}$

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : \mathtt{Cl} \xrightarrow{\mathtt{tick}} E\}$. $F \models \langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}] \mathtt{ff}$
- iff $C1 \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : C1 \xrightarrow{\text{tick}} E\} \text{ and } C1 \models [\text{tock}]ff$
- ▶ iff $\exists F \in \{\texttt{Cl}\} \text{ and } \texttt{Cl} \models [\texttt{tock}] \texttt{ff}$
- ightharpoonup iff $Cl \models [tock]ff$

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$

- ▶ $Cl \models [tick](\langle tick \rangle tt \land [tock]ff)$
- ▶ iff $\forall F \in \{E : \mathtt{Cl} \xrightarrow{\mathtt{tick}} E\}$. $F \models \langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}] \mathtt{ff}$
- iff $C1 \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : C1 \xrightarrow{\text{tick}} E\} \text{ and } C1 \models [\text{tock}]ff$
- ▶ iff $\exists F \in \{\texttt{Cl}\} \text{ and } \texttt{Cl} \models [\texttt{tock}]\texttt{ff}$
- ▶ iff Cl |= [tock]ff
- ▶ iff $\{E : \operatorname{Cl} \xrightarrow{\operatorname{tock}} E\} = \emptyset$

$\mathtt{Cl} \stackrel{\mathrm{def}}{=} \mathtt{tick.Cl}$

- $\blacktriangleright \ \mathtt{Cl} \models [\mathtt{tick}](\langle \mathtt{tick} \rangle \mathtt{tt} \land [\mathtt{tock}]\mathtt{ff})$
- ▶ iff $\forall F \in \{E : C1 \xrightarrow{\texttt{tick}} E\}$. $F \models \langle \texttt{tick} \rangle \texttt{tt} \land [\texttt{tock}] \texttt{ff}$
- iff $C1 \models \langle tick \rangle tt \land [tock]ff$
- iff $Cl \models \langle tick \rangle tt$ and $Cl \models [tock]ff$
- ▶ iff $\exists F \in \{E : C1 \xrightarrow{\texttt{tick}} E\} \text{ and } C1 \models [\texttt{tock}]ff$
- ▶ iff $\exists F \in \{\texttt{Cl}\} \text{ and } \texttt{Cl} \models [\texttt{tock}]\texttt{ff}$
- ightharpoonup iff $C1 \models [tock]ff$
- ▶ iff $\{E : \operatorname{Cl} \xrightarrow{\operatorname{tock}} E\} = \emptyset$
- ightharpoonup iff $\emptyset = \emptyset$

Let A be a universal set of actions including τ . We write

▶ $a_1, ..., a_n$ for $\{a_1, ..., a_n\}$

Let A be a universal set of actions including τ . We write

- ▶ $a_1, ..., a_n$ for $\{a_1, ..., a_n\}$
- ► for the set *A*

Let A be a universal set of actions including τ . We write

- $ightharpoonup a_1, ..., a_n$ for $\{a_1, ..., a_n\}$
- ► for the set *A*
- \blacktriangleright -K for the set A-K

Let A be a universal set of actions including τ . We write

- $ightharpoonup a_1, ..., a_n$ for $\{a_1, ..., a_n\}$
- ► for the set *A*
- \triangleright -K for the set A K
- $-a_1, \ldots, a_n \text{ for } A \{a_1, \ldots, a_n\}$

- ▶ *E* |= [-]ff
- ▶ E is deadlocked, i.e., it cannot execute any action

- ▶ *E* |= [−]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle$ tt

- ▶ *E* |= [-]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle \mathsf{tt}$
- ▶ E can execute some action

- ▶ *E* |= [−]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle tt$
- E can execute some action
- $ightharpoonup E \models \langle \rangle \mathtt{tt} \wedge [-a] \mathtt{ff}$

- ▶ *E* |= [-]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle tt$
- E can execute some action
- $ightharpoonup E \models \langle \rangle \mathsf{tt} \wedge [-a] \mathsf{ff}$
- a must happen next; something can happen, and nothing but a can happen

- ▶ *E* |= [-]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle tt$
- E can execute some action
- $ightharpoonup E \models \langle \rangle$ tt $\wedge [-a]$ ff
- a must happen next; something can happen, and nothing but a can happen
- $ightharpoonup E \models \langle \rangle \mathsf{tt} \wedge [-] \Phi$

- ▶ *E* |= [-]ff
- ▶ *E* is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle tt$
- ▶ E can execute some action
- $ightharpoonup E \models \langle \rangle$ tt $\wedge [-a]$ ff
- a must happen next; something can happen, and nothing but a can happen
- $ightharpoonup E \models \langle \rangle \mathsf{tt} \wedge [-] \Phi$
- Φ holds after one step

- ▶ *E* |= [-]ff
- ▶ E is deadlocked, i.e., it cannot execute any action
- $ightharpoonup E \models \langle \rangle tt$
- ▶ E can execute some action
- $ightharpoonup E \models \langle \rangle \mathsf{tt} \wedge [-a] \mathsf{ff}$
- a must happen next; something can happen, and nothing but a can happen
- $ightharpoonup E \models \langle \rangle \mathsf{tt} \wedge [-] \Phi$
- Φ holds after one step
- $E \models \langle \rangle \mathsf{tt} \wedge [-](\langle \rangle \mathsf{tt} \wedge [-](\langle \rangle \mathsf{tt} \wedge [-a] \mathsf{ff}))$

Process	Formula	Y/N
	$\langle a \rangle \langle b \rangle$ tt	
	$\langle a \rangle [b] ff$	
$\mathtt{a.0} + \mathtt{a.b.0}$	$[a]\langle b \rangle$ tt	
	[a][b]ff	
	⟨a⟩tt	
$(a.0 \mid \overline{a}.0)$	$\langle au angle$ tt	
	$\langle \mathtt{a} angle \langle au angle$ tt	
	⟨a⟩tt	
$(a.0 \mid \overline{a}.0) \setminus a$	$\langle au angle$ tt	
	$\langle \mathtt{a} angle \langle au angle$ tt	

Process	Formula	Y/N
1 10003	Torritala	1/14
	$\langle a \rangle \langle b \rangle$ tt	Υ
	$\langle a \rangle [b] ff$	Y
a.0 + a.b.0	$[a]\langle b \rangle$ tt	N
	[a][b]ff	N
	⟨a⟩tt	Y
$(a.0 \mid \overline{a}.0)$	$\langle au angle$ tt	Y
	$\langle \mathtt{a} angle \langle au angle$ tt	N
	⟨a⟩tt	N
$(a.0 \mid \overline{a}.0) \setminus a$	$\langle au angle$ tt	Y
	$\langle \mathtt{a} angle \langle au angle$ tt	N

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process E

$$E \models \Phi^c \text{ iff } E \not\models \Phi$$

Negation

HML can be extended with a negation operator \neg having the semantics: $E \models \neg \Phi$ iff $E \not\models \Phi$

Negation is redundant in the following sense: For every formula Φ of HML there is a formula Φ^c such that for every process E

$$E \models \Phi^c \text{ iff } E \not\models \Phi$$

 Φ^c is inductively defined as follows:

$$\begin{array}{rcl} \operatorname{tt}^c &=& \operatorname{ff} \\ \operatorname{ff}^c &=& \operatorname{tt} \\ (\Phi_1 \wedge \Phi_2)^c &=& \Phi_1^c \vee \Phi_2^c \\ (\Phi_1 \vee \Phi_2)^c &=& \Phi_1^c \wedge \Phi_2^c \\ ([K]\Phi)^c &=& \langle K \rangle \Phi^c \\ (\langle K \rangle \Phi)^c &=& [K]\Phi^c \end{array}$$

$$F \models \Phi^c \text{ iff } F \not\models \Phi$$
.

$$F \models \Phi^c \text{ iff } F \not\models \Phi.$$

Proof: By induction on the structure of Φ

$$F \models \Phi^c \text{ iff } F \not\models \Phi$$
.

Proof: By induction on the structure of Φ

Basis: $\Phi = tt$ and $\Phi = ff$. Trivial.

$$F \models \Phi^c \text{ iff } F \not\models \Phi$$
.

Proof: By induction on the structure of Φ

Basis: $\Phi = tt$ and $\Phi = ff$. Trivial.

Induction step:

$$F \models \Phi^c \text{ iff } F \not\models \Phi.$$

Proof: By induction on the structure of Φ Basis: $\Phi=\text{tt}$ and $\Phi=\text{ff}.$ Trivial. Induction step: Case $\Phi=\Phi_1\wedge\Phi_2$

$$F \models (\Phi_1 \land \Phi_2)^c$$
iff $F \models \Phi_1^c \lor \Phi_2^c$
iff $F \models \Phi_1^c \text{ or } F \models \Phi_2^c$ (by clause for \lor)
iff $F \not\models \Phi_1 \text{ or } F \not\models \Phi_2$ (by i.h.)
iff $F \not\models \Phi_1 \land \Phi_2$ (by clause for \land).

Case $\Phi = [K]\Phi_1$. $F \models ([K]\Phi_1)^c$ iff $F \models \langle K \rangle \Phi_1^c$ iff $\exists G. \exists a \in K. F \xrightarrow{a} G \text{ and } G \models \Phi_1^c$ iff $\exists G. \exists a \in K. F \xrightarrow{a} G \text{ and } G \not\models \Phi_1$ (by i.h.)

iff $F \not\models [K]\Phi_1$

► A formula is satisfiable (or realisable) if some process satisfies it.

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.
- ▶ A formula is valid if all processes satisfy it.

- ► A formula is satisfiable (or realisable) if some process satisfies it.
- ▶ A formula is unsatisfiable if no process satisfies it.
- A formula is valid if all processes satisfy it.
- ► Two formulas are equivalent if they are satisfied by exactly the same processes

				Y/N
lf	Φ valid	then	Φ satisfiable	
lf	Φ satisfiable	then	Φ^c unsatisfiable	
lf	Φ valid	then	Φ^c unsatisfiable	
lf	Φ unsatisfiable	then	Φ^c valid	

				Y/N
lf	Φ valid	then	Φ satisfiable	Υ
lf	Φ satisfiable	then	Φ^c unsatisfiable	N
lf	Φ valid	then	Φ^c unsatisfiable	Υ
lf	Φ unsatisfiable	then	Φ^c valid	Υ

Let \rightarrow be the implies connective whose definition is

$$\Phi \to \Psi \ \stackrel{\mathrm{def}}{=} \ \Phi^c \vee \Psi.$$

		Y/N
If $(\Phi \to \Psi)$ valid and Φ valid	then Ψ valid	
If $(\Phi \to \Psi)$ satisfiable and Φ satisfiable	then Ψ satisfiable	
If $(\Phi \to \Psi)$ valid and Φ satisfiable	then Ψ satisfiable	

Let \rightarrow be the implies connective whose definition is

$$\Phi \to \Psi \ \stackrel{\mathrm{def}}{=} \ \Phi^c \vee \Psi.$$

		Y/N
If $(\Phi \to \Psi)$ valid and Φ valid	then Ψ valid	Υ
If $(\Phi \to \Psi)$ satisfiable and Φ satisfiable	then Ψ satisfiable	N
If $(\Phi \to \Psi)$ valid and Φ satisfiable	then Ψ satisfiable	Y

Exercise: valid V, unsatisfiable U, or neither N?

	V	U	N
$\Phi \to \neg \Phi$			
$\Phi \to \left(\Psi \to \Phi\right)$			
$\Phi \to \left(\Phi \to \Psi\right)$			
$\langle \mathtt{a} angle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}$			
$\langle a \rangle [b] (\langle a \rangle tt \wedge [a]ff)$			
$\langle \mathtt{a} \rangle [\mathtt{b}] (\langle \mathtt{a} \rangle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}) \wedge [-] \langle \mathtt{b} \rangle \mathtt{tt}$			
$\langle \mathtt{a} \rangle [\mathtt{b}] (\langle \mathtt{a} \rangle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}) \wedge [-] \langle - \rangle \mathtt{tt}$			
$\langle \mathtt{a} \rangle \big(\Phi \vee \Psi \big) \to \big(\langle \mathtt{a} \rangle \Phi \vee \langle \mathtt{a} \rangle \Psi \big)$			
$\big(\big\langle a \big\rangle \Phi \wedge \big\langle a \big\rangle \Psi \big) \to \big\langle a \big\rangle \big(\Phi \wedge \Psi \big)$			
$[\mathtt{a}](\Phi \to \Psi) \to \big([\mathtt{a}]\Phi \to [\mathtt{a}]\Psi\big)$			
$\big(\big[\mathtt{a} \big] \Phi \to \big[\mathtt{a} \big] \Psi \big) \to \big[\mathtt{a} \big] \big(\Phi \to \Psi \big)$			

Exercise: valid V, unsatisfiable U, or neither N?

	V	U	N
$\Phi \to \neg \Phi$			
$\Phi \to \left(\Psi \to \Phi\right)$	$\sqrt{}$		
$\Phi \to \left(\Phi \to \Psi\right)$			$\sqrt{}$
$\langle \mathtt{a} angle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}$			
$\langle a \rangle [b] (\langle a \rangle tt \wedge [a] ff)$			$\sqrt{}$
$\langle \mathtt{a} angle [\mathtt{b}] (\langle \mathtt{a} angle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}) \wedge [-] \langle \mathtt{b} angle \mathtt{tt}$			
$\langle \mathtt{a} angle [\mathtt{b}] (\langle \mathtt{a} angle \mathtt{tt} \wedge [\mathtt{a}] \mathtt{ff}) \wedge [-] \langle - angle \mathtt{tt}$			
$\langle \mathtt{a} \rangle \big(\Phi \vee \Psi \big) \to \big(\langle \mathtt{a} \rangle \Phi \vee \langle \mathtt{a} \rangle \Psi \big)$			
$\big(\langle \mathtt{a} \rangle \Phi \wedge \langle \mathtt{a} \rangle \Psi \big) \to \langle \mathtt{a} \rangle \big(\Phi \wedge \Psi \big)$			
$[\mathtt{a}](\Phi \to \Psi) \to \big([\mathtt{a}]\Phi \to [\mathtt{a}]\Psi\big)$			
$\big([\mathtt{a}]\Phi \to [\mathtt{a}]\Psi\big) \to [\mathtt{a}]\big(\Phi \to \Psi\big)$			