Communication and Concurrency
Lecture 5

Colin Stirling (cps)
School of Informatics

3rd October 2013

Modal (Hennessy-Milner) logic: syntax

(DZZ:tt‘ff|¢1/\¢2‘¢1V¢2’[K]¢’<K>¢

A formula can be

Modal (Hennessy-Milner) logic: syntax

¢ZZ:tt‘ff|¢1/\¢2‘¢1V¢'2 | [K]¢’<K>¢
A formula can be

» the constant true formula tt

» the constant false formula ff,

Modal (Hennessy-Milner) logic: syntax

Ou=tt|ff | P APy | PV Iy | [K]P | (K)P
A formula can be
» the constant true formula tt
» the constant false formula ff,

» a conjunction of formulas ®; A ®5

» a disjunction of formulas ®; V ®5,

Modal (Hennessy-Milner) logic: syntax

¢ZZ:tt‘ff|¢1/\¢2‘¢1V¢2 | [K]¢|<K>¢
A formula can be

the constant true formula tt

the constant false formula ff,

>
>
» a conjunction of formulas ®; A ®5
» a disjunction of formulas ®; V ®5,
>

a formula [K]®, where K is any set of actions, read as “box
K ®", or “for all K-derivatives ®,”

Modal (Hennessy-Milner) logic: syntax

¢ZZ:tt‘ff|¢1/\¢2‘¢1V¢'2 | [K]¢’<K>¢
A formula can be

» the constant true formula tt
» the constant false formula ff,

» a conjunction of formulas ®; A ®5

» a disjunction of formulas ®; V ®5,

» a formula [K]®, where K is any set of actions, read as “box
K ®", or “for all K-derivatives ®,”

a formula (K)®, where K is any set of actions, read as
“diamond K ®", or “for some K-derivative ¢."

v

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.

» E=tt EWff

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.
» E=tt EWff
>» EEOAVIffEE®and EEV
>» EEOVVIffEE®r EEV

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.
» E=tt EWff
>» EEOAVIffEE®and EEV
» EEOVVIffEE=®or EEWV
» EE[K|®iffYFe{E : E-25E andac K}. FE®

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E

satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.
» E=tt EWff

EEOANVIffEE®and EEV

EEOVVIffEE®r EEWV

EE[KI®iffYFe{E : E-2FE andac K}. F=¢

EE(K)®iffIFc{E : E-XF andac K}. F=®

vV V. Vv Y

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E

satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.
» E=tt EWff

EEOAVIffEE®and EEV

EEOVVIfEEd®r EEV

EE[KI®iffYFe{E : E-2FE andac K}. F=¢

EE(K)OiffIFe{E : E-2 F andacK}). F=o®

A process E has the property [K]® if every process which E

evolves to after carrying out any action in K has the property
(0}

vV vVv.v. v Yy

Modal (Hennessy-Milner) logic: semantics

We define when a process E satisfies a formula ®. Either E
satisfies ®, denoted by E |= ®, or it doesn't, denoted by E [~ ®.

» E=tt EWff

>» EEOAVIffEE®and EEV

» EEOVVIffEE®r EEV

» EE[K|®iffYFe{E : E-25E andac K}. FE®

» EE(K)Oiff3Fe{E : E-2 F andacK}. F=o®

» A process E has the property [K]® if every process which E

evolves to after carrying out any action in K has the property
(0}

A process E satisfies (K)® if E can become a process that
satisfies ® by carrying out an action in K

v

Examples

» E | (tick)tt
E can do a tick

Examples

» E | (tick)tt
E can do a tick
» E = (tick)(tock)tt
E can do a tick and then a tock

Examples

» E | (tick)tt
E can do a tick
» E = (tick)(tock)tt
E can do a tick and then a tock

» E | ({tick,tock})tt
E can do a tick or a tock

Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E = ({tick,tock})tt

E can do a tick or a tock

E |= [tick]ff

E cannot do a tick

v

v

v

Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E = ({tick,tock})tt

E can do a tick or a tock

E |= [tick]ff

E cannot do a tick

E |= (tick)ff

This is equivalent to £f!

v

v

v

v

Examples

v

E = (tick)tt

E can do a tick

E = (tick)(tock)tt

E can do a tick and then a tock
E = ({tick,tock})tt

E can do a tick or a tock
E |= [tick]ff

E cannot do a tick

E |= (tick)ff

This is equivalent to £f!

E = [tick]tt

This is equivalent to true!

v

v

v

v

v

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff

tick

» iff 3F € {E : C1 = E} and C1 |= [tock]|ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff
> iff 3F € {E : C1 2% E} and C1 = [tock]ff
» iff 3F € {C1} and C1 = [tock]ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff
> iff 3F € {E : C1 2% E} and C1 = [tock]ff
» iff 3F € {C1} and C1 = [tock]ff
» iff C1 = [tock|ff

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff
> iff 3F € {E : C1 2% E} and C1 = [tock]ff
» iff 3F € {C1} and C1 = [tock]ff
» iff C1 = [tock|ff

tock

» iff {E:CL=SE}=10

Checking satisfaction

c1 % tick.c1

Does C1 have the property: [tick]|((tick)tt A [tock|ff) ?
» Cl |= [tick|((tick)tt A [tock]ff)
> iff VF € {E : €1 2% E}. F = (tick)tt A [tock|ff
» iff C1 |= (tick)tt A [tock]|ff
» iff C1 |= (tick)tt and C1 = [tock]ff
> iff 3F € {E : C1 2% E} and C1 = [tock]ff
» iff 3F € {C1} and C1 = [tock]ff
» iff C1 = [tock|ff
> iff {E:CL2SE} =90
> iff) =10

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> ai,...,a, for {a1,...,a,}

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> ai,...,a, for {a1,...,a,}
» — for the set A

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> ai,...,a, for {a1,...,a,}
» — for the set A
» —K fortheset A— K

Syntactic sugar for sets of actions

Let A be a universal set of actions including 7.
We write

> ai,...,a, for {a1,...,a,}
» — for the set A

» —K fortheset A— K

>

—a1,...,ap for A—{a1,...,an}

More examples

» E = [-]ff

More examples

» E = [-]ff

» E is deadlocked, i.e., it cannot execute any action

More examples

» E = [-]ff
» £ is deadlocked, i.e., it cannot execute any action

> E=(—)tt

More examples

» E = [-]ff

» E is deadlocked, i.e., it cannot execute any action
> EE(—)tt

» E can execute some action

More examples

E [t
E is deadlocked, i.e., it cannot execute any action
E b (-)tt

E can execute some action

EE (—)tt A[—a]ff

vV vVv.v. v Yy

More examples

» E = [-]ff

» E is deadlocked, i.e., it cannot execute any action

> EE(—)tt

» E can execute some action

> E = (—)tt A[—aff

» a must happen next; something can happen, and nothing but

a can happen

More examples

E | [t
E is deadlocked, i.e., it cannot execute any action

E b (—)te

E can execute some action

EE (—)tt A[—a]ff

a must happen next; something can happen, and nothing but
a can happen

E = (-)ss A [0

vV V.V v Vv Y

v

More examples

E |- [les
E is deadlocked, i.e., it cannot execute any action

E b (—)te

E can execute some action

EE (—)tt A[—a]ff

a must happen next; something can happen, and nothing but
a can happen

E b (-)tt Ao

® holds after one step

vV V.V v Vv Y

v

v

More examples

E |- [les
E is deadlocked, i.e., it cannot execute any action

E b (—)te

E can execute some action

EE (—)tt A[—a]ff

a must happen next; something can happen, and nothing but
a can happen

EE (—)ttA[-]o

® holds after one step

E = ()t A[=](()te A [=]((5) et A[—afff))

vV V.V v Vv Y

\ A {

v

Exercise

Process

Formula

Y/N

a.0 +a.b.0

(a)(b)tt

(a)[p]ff

[a](p)tt

[a][p]££

(2.0]7.0)

a)tt

T)tt

a

{r)

(2.0 | 3.0)\a

a)tt

tt

tt
a)(T)tt

()
{r)
(a)
()
()
(a)

Exercise

Process

Formula

Y/N

a.0 +a.b.0

(a)(b)tt

(a)[p]ff

[a](p)tt

[a][p]££

(2.0]7.0)

a)tt

T)tt

a

{r)

(2.0 | 3.0)\a

a)tt

tt

tt
a)(T)tt

()
{r)
(a)
()
()
(a)

Z Xl Z2 Z X X Z2 2Z2 L <

Negation

HML can be extended with a negation operator — having the
semantics: £ = - iff E [~ ®

Negation

HML can be extended with a negation operator — having the
semantics: £ = - iff E [~ ®

Negation is redundant in the following sense: For every formula &
of HML there is a formula ®€ such that for every process E

El= o iff Eo

Negation

HML can be extended with a negation operator — having the
semantics: £ = - iff E [~ ®

Negation is redundant in the following sense: For every formula &
of HML there is a formula ®€ such that for every process E

El= o iff Eo

®€ is inductively defined as follows:

tt¢ = ff

ff¢ = +tt
(P1AD) = VDS
(b1 VD) = PIADS

)
([Klo)e = (K)oc
(K)®)s = [K]oc

Proposition: For every process F and HML-formula &:

FlEOSiff FlIto.

Proposition: For every process F and HML-formula &:

FlEOSiff FlIto.

Proof: By induction on the structure of ¢

Proposition: For every process F and HML-formula &:

FlEOSiff FlIto.

Proof: By induction on the structure of ¢
Basis: ® = tt and & = ££. Trivial.

Proposition: For every process F and HML-formula &:

FlEOSiff FlIto.

Proof: By induction on the structure of ¢
Basis: ® = tt and & = ££. Trivial.
Induction step:

Proposition:

For every process F and HML-formula &:

FlEOSiff FlIto.

Proof: By induction on the structure of ¢
Basis: ® = tt and & = ££. Trivial.

Induction step:

Case ® = &1 A Dy

iff
iff
ift
iff

F ': (d)l A CDQ)C

F = o5 v oS

FE=®f or Fl=®5 (by clause for V)
Fld, or F I~ d, (by i.h.)
F = &1 Ay (by clause for A).

Case ¢ = [K]P;.

iff
iff
iff
iff

F = ([K]®1)*

F = (K)ot

3G.3ac K.F 25 G and G = ¢S
3G.3ac K.F 25 G and G }~ &
F 1~ [K]®1

(by i.h.)

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
it.

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
it.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

Realisability, validity, equivalence

» A formula is satisfiable (or realisable) if some process satisfies
It.

» A formula is unsatisfiable if no process satisfies it.

» A formula is valid if all processes satisfy it.

» Two formulas are equivalent if they are satisfied by exactly the
same processes

Exercise

Are the following statements true?

Y/N
If & valid then & satisfiable
If & satisfiable then &€ unsatisfiable
If & valid then @€ unsatisfiable
If & unsatisfiable then &€ valid

Exercise

Are the following statements true?

Y/N
If & valid then & satisfiable Y
If & satisfiable then &€ unsatisfiable | N
If & valid then @€ unsatisfiable | Y
If & unsatisfiable then &€ valid Y

Exercise

Let — be the implies connective whose definition is

o v L gpeyy,

Are the following statements true?

Y/N

If (¢ — V) valid and ¢ valid

then V¥ valid

If (& — W) satisfiable and ¢ satisfiable

then W satisfiable

If (¢ — V) valid and & satisfiable

then V¥ satisfiable

Exercise

Let — be the implies connective whose definition is

o v L gpeyy,

Are the following statements true?

Y/N
If (¢ — V) valid and ¢ valid then W valid Y
If (& — W) satisfiable and @ satisfiable ~then W satisfiable | N
If (¢ — V) valid and & satisfiable then W satisfiable | Y

Exercise: valid V, unsatisfiable U, or neither N 7
V| U|N

b — -0

d— (V- 0)

d— (- V)
(a)tt A [a]ff
(a)[b]((2)tt A [a]ff)
(a)[p]((a)tt Afa]ff) A [-]
(a)[p]((a)tt Afa]ff) A [-](—)tt
(@) (®VV) — ((2)®V (2)V)
((2)® A ()V) — (a)(® A V)
[a](® — V) — ([a]® — [a]V)
([a]® — [a]V¥) — [a](® — W)

a

(b)tt

a

Exercise: valid V, unsatisfiable U, or neither N 7

V |U/|N
d - -0
d— (V- o) V
d— (- V) Vv
(a)tt A [a]ff Vv
(a)[b]((2)tt A [a]ff) v
(a)[p]((a)tt Afa]ff) A [-](b)tt Vv
(a)[p]((a)tt Afa]ff) A -tt v
(@) (®V V) — ((2)®V (2)V) Vv
((2)® A ()V) — (a)(® A V) v
[a](® — V) — ([a]® — [a]V) Vv
([a]® — [a]V¥) — [a](® — W) Vv

