Communication and Concurrency
Lecture 4

Colin Stirling (cps)
School of Informatics

30th September 2013



Renaming and linking

Canonical buffer: B < i(x).o(x).B



Renaming and linking

Canonical buffer: B < i(x).o(x).B
Relationship to Cop 7



Renaming and linking

. f
Canonical buffer: B ™ i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f



Renaming and linking

. f
Canonical buffer: B i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

1. Respects complements: f(a) = f(a)



Renaming and linking

. f
Canonical buffer: B i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

1. Respects complements: f(a) = f(a)

2. Conserves 7: (1) =T



Renaming and linking

. f

Canonical buffer: B i(x).o(x).B
Relationship to Cop 7

One more operator: action renaming function f

1. Respects complements: f(a) = f(a)
2. Conserves 7: (1) =T

bi/ai,...,bn/an is the f that



Renaming and linking

Canonical buffer: B < i(x).o(x).B

Relationship to Cop 7

One more operator: action renaming function f
1. Respects complements: f(3) = f(a)
2. Conserves 7: (1) =T

bi/ai,...,bn/an is the f that

» renames a; to b; (and 3; to b;)



Renaming and linking

Canonical buffer: B < i(x).o(x).B

Relationship to Cop 7

One more operator: action renaming function f
1. Respects complements: f(3) = f(a)
2. Conserves 7: (1) =T

bi/ai,...,bn/an is the f that
» renames a; to b; (and 3; to b;)

» and leaves any other action ¢ unchanged



Transition rule

Associated with f is the renaming operator [f]

b
r() S b

Example: Cop is B[in/i, out/o]
Assuming e.g in/i maps each action i(v) to in(v)

f(a)



Building an n-place buffer

B % i(x).5(x).B



Building an n-place buffer

B % i(x).5(x).B

i o i ) i )
i o, o, o, o, 0
—_— _— = —_—= = B —



Building an n-place buffer

B % i(x).5(x).B

i o i ) i )
i o, o, o, o, 0
—_— _— = —_—= = B —

By = Bfo1/0]
Biy1 = B[Oj/i,OH_l/O] 1<j<n-1
B, = Blos-1/i]



Building an n-place buffer

B % i(x).5(x).B

i o i ) i )
i o, o, o, o, 0
—_— _— = —_—= = B —

By = Bfo1/0]
Bjy1 = Bloj/i,0j41/0] 1<j<n—1
B, = Blos-1/i]

B(n)=(By] ... |Bn)\{o1,...,0n 1}



A scheduler

Problem: assume n tasks when n > 1.
» a; initiates the jth task



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (a; and b; happen alternately for each i. )



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (a; and b; happen alternately for each i. )

A simple cycler: Cy’ o a.c.b.d.Cy’



A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the jth task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (a; and b; happen alternately for each i. )

A simple cycler: Cy’ o a.c.b.d.Cy’

y
ﬁ‘@‘*



Solution using n simple cyclers ?

Cy} Cy'lai/a,c1/c, b1/b,Cp/d]
Cy’ (d.Ccy")[ai/a,ci/c,bi/b,Ci—1/d] 1<i<n

(Cyrl - - ICyp )\ ety .o cnt



When n = 4. What is wrong ?




A solution: give up simple cycler

cy & a.c.(b.d.Cy + d.b.Cy)



A solution: give up simple cycler

cy & a.c.(b.d.Cy + d.b.Cy)

Cylai/a,c1/c, b1/b,Tp/d]
(d.Cy)[a,-/a, C,'/C, b,‘/b,f;_l/d] 1<i<n

Cy;
Cy;

(Cyi| ... [Cy,)\{c1,. .., cn}



A solution: give up simple cycler

cy & a.c.(b.d.Cy + d.b.Cy)

Cylai/a,c1/c, b1/b,Tp/d]
(d.Cy)[a,-/a, C,'/C7 b,‘/b,f,'_l/d] 1<i<n

Cy;
Cy;

(Cyil .- [Cya)\ers- s}

How do we know it is right?



Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming



Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition — and == and rules for
their derivation



Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition — and == and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions



Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition — and == and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

4. Introduced Flow Graphs



Summary

4.

. Introduced syntax of CCS: prefix, sum, parallel composition,

restriction, renaming

Introduced two types of transition — and == and rules for
their derivation

Introduced two types of transition graph that abstracts from
derivation of transitions

Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and
Concurrency, Prentice-Hall, 1989



