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Renaming and linking

Canonical buffer: B < i(x).o(x).B

Relationship to Cop 7

One more operator: action renaming function f
1. Respects complements: f(3) = f(a)
2. Conserves 7: (1) =T

bi/ai,...,bn/an is the f that
» renames a; to b; (and 3; to b;)

» and leaves any other action ¢ unchanged



Transition rule

Associated with f is the renaming operator [f]

b
r() S b

Example: Cop is B[in/i, out/o]
Assuming e.g in/i maps each action i(v) to in(v)

f(a)
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Building an n-place buffer

B % i(x).5(x).B

i o i ) i )
i o, o, o, o, 0
—_— _— = —_—= = B —

By = Bfo1/0]
Bjy1 = Bloj/i,0j41/0] 1<j<n—1
B, = Blos-1/i]

B(n)=(By] ... |Bn)\{o1,...,0n 1}
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y
ﬁ‘@‘*



Solution using n simple cyclers ?

Cy} Cy'lai/a,c1/c, b1/b,Cp/d]
Cy’ (d.Ccy")[ai/a,ci/c,bi/b,Ci—1/d] 1<i<n

(Cyrl - - ICyp )\ ety .o cnt



When n = 4. What is wrong ?
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A solution: give up simple cycler

cy & a.c.(b.d.Cy + d.b.Cy)

Cylai/a,c1/c, b1/b,Tp/d]
(d.Cy)[a,-/a, C,'/C7 b,‘/b,f,'_l/d] 1<i<n

Cy;
Cy;

(Cyil .- [Cya)\ers- s}

How do we know it is right?
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Summary

4.

. Introduced syntax of CCS: prefix, sum, parallel composition,

restriction, renaming

Introduced two types of transition — and == and rules for
their derivation

Introduced two types of transition graph that abstracts from
derivation of transitions

Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and
Concurrency, Prentice-Hall, 1989



