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Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

2. Conserves τ : f (τ) = τ

b1/a1, . . . , bn/an is the f that

◮ renames ai to bi (and ai to bi )

◮ and leaves any other action c unchanged



Transition rule

Associated with f is the renaming operator [f ]

R([f ])
E [f ]

b
−→ F [f ]

E
a

−→ F
b = f (a)

Example: Cop is B[in/i, out/o]
Assuming e.g in/i maps each action i(v) to in(v)
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B1 ≡ B[o1/o]
Bj+1 ≡ B[oj/i, oj+1/o] 1 ≤ j < n − 1
Bn ≡ B[on−1/i]

B(n) ≡ (B1 | . . . |Bn)\{o1, . . . , on−1}
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A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (ai and bi happen alternately for each i . )

A simple cycler: Cy′
def
= a.c .b.d .Cy′
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Solution using n simple cyclers ?

Cy’

a

c

b

d

Cy′1 ≡ Cy′[a1/a, c1/c , b1/b, cn/d ]
Cy′i ≡ (d .Cy′)[ai/a, ci/c , bi/b, c i−1/d ] 1 < i ≤ n

(Cy′1 | . . . | Cy′n)\{c1, . . . , cn}



When n = 4. What is wrong ?
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A solution: give up simple cycler

Cy
def
= a.c .(b.d .Cy + d .b.Cy)

Cy1 ≡ Cy[a1/a, c1/c , b1/b, cn/d ]
Cyi ≡ (d .Cy)[ai/a, ci/c , bi/b, c i−1/d ] 1 < i ≤ n

(Cy1 | . . . | Cyn)\{c1, . . . , cn}

How do we know it is right?
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restriction, renaming

2. Introduced two types of transition
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a

=⇒ and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

4. Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and

Concurrency, Prentice-Hall, 1989


