
Communication and Concurrency

Lecture 4

Colin Stirling (cps)

School of Informatics

30th September 2013

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

2. Conserves τ : f (τ) = τ

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

2. Conserves τ : f (τ) = τ

b1/a1, . . . , bn/an is the f that

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

2. Conserves τ : f (τ) = τ

b1/a1, . . . , bn/an is the f that

◮ renames ai to bi (and ai to bi)

Renaming and linking

Canonical buffer: B
def
= i(x).o(x).B

Relationship to Cop ?
One more operator: action renaming function f

1. Respects complements: f (a) = f (a)

2. Conserves τ : f (τ) = τ

b1/a1, . . . , bn/an is the f that

◮ renames ai to bi (and ai to bi)

◮ and leaves any other action c unchanged

Transition rule

Associated with f is the renaming operator [f]

R([f])
E [f]

b
−→ F [f]

E
a

−→ F
b = f (a)

Example: Cop is B[in/i, out/o]
Assuming e.g in/i maps each action i(v) to in(v)

Building an n-place buffer

B
def
= i(x).o(x).B

Building an n-place buffer

B
def
= i(x).o(x).B

i o i o

o

B B B...

...

_

21
oi

1
o
_ _

BB

_
i o

_

o
n-1

o
_

B
1 2 n

Building an n-place buffer

B
def
= i(x).o(x).B

i o i o

o

B B B...

...

_

21
oi

1
o
_ _

BB

_
i o

_

o
n-1

o
_

B
1 2 n

B1 ≡ B[o1/o]
Bj+1 ≡ B[oj/i, oj+1/o] 1 ≤ j < n − 1
Bn ≡ B[on−1/i]

Building an n-place buffer

B
def
= i(x).o(x).B

i o i o

o

B B B...

...

_

21
oi

1
o
_ _

BB

_
i o

_

o
n-1

o
_

B
1 2 n

B1 ≡ B[o1/o]
Bj+1 ≡ B[oj/i, oj+1/o] 1 ≤ j < n − 1
Bn ≡ B[on−1/i]

B(n) ≡ (B1 | . . . |Bn)\{o1, . . . , on−1}

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

2. tasks may terminate in any order

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (ai and bi happen alternately for each i .)

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (ai and bi happen alternately for each i .)

A simple cycler: Cy′
def
= a.c .b.d .Cy′

A scheduler
Problem: assume n tasks when n > 1.

◮ ai initiates the ith task

◮ bi signals its completion

The scheduler plans the order of task initiation, ensuring

1. actions a1 . . . an carried out cyclically

2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (ai and bi happen alternately for each i .)

A simple cycler: Cy′
def
= a.c .b.d .Cy′

Cy’

a

c

b

d

Solution using n simple cyclers ?

Cy’

a

c

b

d

Cy′1 ≡ Cy′[a1/a, c1/c , b1/b, cn/d]
Cy′i ≡ (d .Cy′)[ai/a, ci/c , bi/b, c i−1/d] 1 < i ≤ n

(Cy′1 | . . . | Cy′n)\{c1, . . . , cn}

When n = 4. What is wrong ?

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
� �

�
�
�

�
�
�

�
�
�

a a

b

bb

c
__

c
_

c
_

c c

c c

1 2

1

34

4 1

23

1 2

34

c

Cy’ Cy’

Cy’ Cy’

1 2

34

a4 a3

b2

A solution: give up simple cycler

Cy
def
= a.c .(b.d .Cy + d .b.Cy)

A solution: give up simple cycler

Cy
def
= a.c .(b.d .Cy + d .b.Cy)

Cy1 ≡ Cy[a1/a, c1/c , b1/b, cn/d]
Cyi ≡ (d .Cy)[ai/a, ci/c , bi/b, c i−1/d] 1 < i ≤ n

(Cy1 | . . . | Cyn)\{c1, . . . , cn}

A solution: give up simple cycler

Cy
def
= a.c .(b.d .Cy + d .b.Cy)

Cy1 ≡ Cy[a1/a, c1/c , b1/b, cn/d]
Cyi ≡ (d .Cy)[ai/a, ci/c , bi/b, c i−1/d] 1 < i ≤ n

(Cy1 | . . . | Cyn)\{c1, . . . , cn}

How do we know it is right?

Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

4. Introduced Flow Graphs

Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming

2. Introduced two types of transition
a

−→ and
a

=⇒ and rules for
their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

4. Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and

Concurrency, Prentice-Hall, 1989

