Communication and Concurrency
Lecture 4

Colin Stirling (cps)
School of Informatics

30th September 2013

Renaming and linking

Canonical buffer: B % i(x).o(x).B
Relationship to Cop 7

Renaming and linking

Canonical buffer: B % i(x).o(x).B

Renaming and linking

Canonical buffer: B % i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

Renaming and linking

Canonical buffer: B % i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

1. Respects complements: f(3) = f(a)

Renaming and linking

Canonical buffer: B % i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

1. Respects complements: f(3) = f(a)
2. Conserves 7: (1) =7

bi/ai,...,bn/a, is the f that

Renaming and linking

Canonical buffer: B % i(x).o(x).B
Relationship to Cop 7
One more operator: action renaming function f

1. Respects complements: f(3) = f(a)

2. Conserves 7: (1) =7

Renaming and linking

Canonical buffer: B % i(x).o(x).B

Relationship to Cop 7

One more operator: action renaming function f
1. Respects complements: f(3) = f(a)
2. Conserves 7: (1) =17

bi/ai,...,by/a, is the f that

> renames a; to b; (and 3; to b;)

Renaming and linking Transition rule

Canonical buffer: B %' i(x).o(x).B

Relationship to Cop 7 Associated with f is the renaming operator [f]
One more operator: action renaming function f

1. Respects complements: f(3) = f(a) E[f] — F[f] b—

R([f]) f(a)
2. Conserves 7: (1) =17 E—=F
bi/ai,...,bn/an is the f that Example: Cop is B[in/i, out/o]
> renames a; to b; (and 7 to b;) Assuming e.g in/i maps each action i(v) to in(v)
» and leaves any other action ¢ unchanged
Building an n-place buffer Building an n-place buffer
B i(x).5(x).B B i(x).5(x).B

i o i o i o
%% %H T e -

i 0, 0, 0, o, 0

= = —~ . - =

Building an n-place buffer

B % i(x).5(x).B
i [} i [5) i)
%% %H... . e o
i g, o 7 v
e

Bq = B[ol/o]
Bjt1 = Boj/i,0j41/0] 1<j<n—1
B, = Blop-1/i]

A scheduler

Problem: assume n tasks when n > 1.
» g; initiates the /th task

Building an n-place buffer

B2 1(x).5(x).B

i o i 0o
%% %H o
i 0, 0, 0,
. — = ..

B; = Blo1/0]
Bit1 = Boj/i,0541/0] 1
B, = Blo,-1/i]

B(n)= (Bi| ... | Bn)\{o1,

A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the /th task

» b; signals its completion

i o
6
o, 0

<j<n-1

...,Onfl}

A scheduler

Problem: assume n tasks when n > 1.
» g; initiates the /th task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring

A scheduler
Problem: assume n tasks when n > 1.
» g; initiates the /th task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions a; ... a, carried out cyclically
2. tasks may terminate in any order

A scheduler

Problem: assume n tasks when n > 1.
» a; initiates the /th task
» b; signals its completion

The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically

A scheduler
Problem: assume n tasks when n > 1.
» a; initiates the /th task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions a; ... ap carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has
finished. (a; and b; happen alternately for each /.)

A scheduler

Problem: assume n tasks when n > 1.
» g; initiates the /th task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions a; ... a, carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has

finished. (a; and b; happen alternately for each i.)

A simple cycler: Cy’ aof a.c.b.d.cy’

Solution using n simple cyclers ?

d
T b
Cy; = Cy'lai/a c1i/c,bi/b,Cy/d]
Cy:- = (d.Cy')[a,-/a,c,-/c,b,-/b,E,-,l/d] 1<i<n

(Cyrl .- [Cyp)\{er, ..., cn}

A scheduler

Problem: assume n tasks when n > 1.
» a; initiates the /th task
» b; signals its completion

The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order
3. but a task cannot be restarted until its previous operation has

finished. (a; and b; happen alternately for each i.)

A simple cycler: Cy’ o a.c.b.d.cy’
y
Cc
d
T b

When n = 4. What is wrong ?

A solution: give up simple cycler A solution: give up simple cycler

def

Cy = a.c.(b.d.Cy + d.b.Cy) Cy def a.c.(b.d.Cy + d.b.Cy)
Cy; = Cylai/a,ca/c,bi/b,Cy/d]
Cy, = (d.Cy)[a;/a, C,'/C, b;/b,f;_l/d] 1<i<n
(Cyp | .- ICy)\{c1:--- e}
A solution: give up simple cycler Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition,

def
Cy = a.c.(b.d.Cy +d.b.Cy) restriction, renaming

Cylai/a,c1/c, b1/b,Tp/d]
(d.Cy)[a,-/a, C,'/C, b,‘/b,f;_l/d] 1<i<n

Cyy
Cy;

(Cyi |- [Cy)\ers. s cn)

How do we know it is right?

Summary Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition, 1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming restriction, renaming

2. Introduced two types of transition —— and == and rules for 2. Introduced two types of transition — and == and rules for
their derivation their derivation

3. Introduced two types of transition graph that abstracts from
derivation of transitions

Summary Summary

1. Introduced syntax of CCS: prefix, sum, parallel composition, 1. Introduced syntax of CCS: prefix, sum, parallel composition,
restriction, renaming restriction, renaming

2. Introduced two types of transition — and == and rules for 2. Introduced two types of transition — and == and rules for
their derivation their derivation

3. Introduced two types of transition graph that abstracts from 3. Introduced two types of transition graph that abstracts from
derivation of transitions derivation of transitions

4. Introduced Flow Graphs 4. Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and
Concurrency, Prentice-Hall, 1989

