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One more operator: action renaming function f
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Renaming and linking Transition rule

Canonical buffer: B %' i(x).o(x).B

Relationship to Cop 7 Associated with f is the renaming operator [f]
One more operator: action renaming function f

1. Respects complements: f(3) = f(a) E[f] — F[f] b—

R([f]) f(a)
2. Conserves 7: (1) =17 E—=F
bi/ai,...,bn/an is the f that Example: Cop is B[in/i, out/o]
> renames a; to b; (and 7 to b;) Assuming e.g in/i maps each action i(v) to in(v)
» and leaves any other action ¢ unchanged
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A scheduler

Problem: assume n tasks when n > 1.
» g; initiates the /th task
» b; signals its completion
The scheduler plans the order of task initiation, ensuring
1. actions a; ... a, carried out cyclically
2. tasks may terminate in any order

3. but a task cannot be restarted until its previous operation has

finished. (a; and b; happen alternately for each i. )

A simple cycler: Cy’ aof a.c.b.d.cy’

Solution using n simple cyclers ?
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A scheduler

Problem: assume n tasks when n > 1.
» a; initiates the /th task
» b; signals its completion

The scheduler plans the order of task initiation, ensuring
1. actions aj ... a, carried out cyclically
2. tasks may terminate in any order
3. but a task cannot be restarted until its previous operation has

finished. (a; and b; happen alternately for each i. )

A simple cycler: Cy’ o a.c.b.d.cy’
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When n = 4. What is wrong ?




A solution: give up simple cycler A solution: give up simple cycler

def

Cy = a.c.(b.d.Cy + d.b.Cy) Cy def a.c.(b.d.Cy + d.b.Cy)
Cy; = Cylai/a,ca/c,bi/b,Cy/d]
Cy, = (d.Cy)[a;/a, C,'/C, b;/b,f;_l/d] 1<i<n
(Cyp | .- ICy)\{c1:--- e}
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def
Cy = a.c.(b.d.Cy +d.b.Cy) restriction, renaming

Cylai/a,c1/c, b1/b,Tp/d]
(d.Cy)[a,-/a, C,'/C, b,‘/b,f;_l/d] 1<i<n

Cyy
Cy;

(Cyi |- [Cy)\ers. s cn)

How do we know it is right?
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4. Introduced Flow Graphs 4. Introduced Flow Graphs

Reading: Chapters 1 and 2, Robin Milner Communication and
Concurrency, Prentice-Hall, 1989



