
Communication and Concurrency

Lecture 2

Colin Stirling (cps)

School of Informatics

23rd September 2013

Concurrent composition: E |F

R(| com)
E |F

τ

−→ E ′ |F ′

E
a

−→ E ′ F
a

−→ F ′

R(|)
E |F

a
−→ E ′ |F

E
a

−→ E ′

E |F
a

−→ E |F ′

F
a

−→ F ′

Concurrent composition: E |F

R(| com)
E |F

τ

−→ E ′ |F ′

E
a

−→ E ′ F
a

−→ F ′

R(|)
E |F

a
−→ E ′ |F

E
a

−→ E ′

E |F
a

−→ E |F ′

F
a

−→ F ′

Example: user of a copier

Cop
def
= in(x).out(x).Cop

User
def
= write(x).Userx

Userv
def
= in(v).User

Concurrent composition: E |F

R(| com)
E |F

τ

−→ E ′ |F ′

E
a

−→ E ′ F
a

−→ F ′

R(|)
E |F

a
−→ E ′ |F

E
a

−→ E ′

E |F
a

−→ E |F ′

F
a

−→ F ′

Example: user of a copier

Cop
def
= in(x).out(x).Cop

User
def
= write(x).Userx

Userv
def
= in(v).User

Cop | Userv
τ

−→ out(v).Cop | User

Cop
in(v)
−→ out(v).Cop

in(x).out(x).Cop
in(v)
−→ out(v).Cop

Userv
in(v)
−→ User

in(v).User
in(v)
−→ User

More users

Cop
def
= in(x).out(x).Cop

User
def
= write(x).Userx

Userv
def
= in(v).User

Cop | (Userv1 | Userv2)
τ

−→ out(v1).Cop | (User | Userv2)

Cop
in(v1)
−→ out(v1).Cop

in(x).out(x).Cop
in(v1)
−→ out(v1).Cop

Userv1 | Userv2
in(v1)
−→ User | Userv2

Userv1
in(v1)
−→ User

in(v1).User
in(v1)
−→ User

Exercise

1. What are the possible initial transitions of

Cop | (Userv1 | Userv2)

Exercise

1. What are the possible initial transitions of

Cop | (Userv1 | Userv2)

2. Draw the transition graph of Cnt

Cnt
def
= up.(Cnt | down.0)

And compare it with Ct0

Ct0
def
= up.Ct1 + round.Ct0

Cti+1
def
= up.Cti+2 + down.Cti

Flow graphs

Summarizes potential movement of information flowing into and
out of ports.

◮ User and Cop

in

__
in out

write

User Cop

Flow graphs

Summarizes potential movement of information flowing into and
out of ports.

◮ User and Cop

in

__
in out

write

User Cop

◮ User | Cop

write in

__

in out

User Cop

◮ User | User | Cop

in

__

in

__

in out

write

write

User

 User

Cop

◮ And so on with more users

A private copier?

◮ Like to achieve
write out

User Cop

write
(Cop|User)\K

out

A private copier?

◮ Like to achieve
write out

User Cop

write
(Cop|User)\K

out

◮ Operation \K : Restriction
K = {in(v) : v ∈ D} abbreviate to in

A private copier?

◮ Like to achieve
write out

User Cop

write
(Cop|User)\K

out

◮ Operation \K : Restriction
K = {in(v) : v ∈ D} abbreviate to in

◮ (User | Cop)\in

Transition rule for \J

Assume τ 6∈ J and J is {a : a ∈ J}

E\J
a

−→ F\J

E
a

−→ F
a 6∈ J ∪ J

Transition rule for \J

Assume τ 6∈ J and J is {a : a ∈ J}

E\J
a

−→ F\J

E
a

−→ F
a 6∈ J ∪ J

Example

(Cop | Userv)\in
τ

−→ (out(v).Cop | User)\in

Cop | Userv
τ

−→ out(v).Cop | User

Cop
in(v)
−→ out(v).Cop

in(x).out(x).Cop
in(v)
−→ out(v).Cop

Userv
in(v)
−→ User

in(v).User
in(v)
−→ User

Abbreviations

Process descriptions can become large, especially when they
consist of multiple components.
So P ≡ F means that P abbreviates F

Abbreviations

Process descriptions can become large, especially when they
consist of multiple components.
So P ≡ F means that P abbreviates F

Road
def
= car.up.ccross.down.Road

Rail
def
= train.green.tcross.red.Rail

Signal
def
= green.red.Signal + up.down.Signal

Crossing ≡ (Road | Rail | Signal)\K

K = {green, red, up, down}

Flow graphs

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���� ���� ���� ���� ������ ������

���������� ����������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

SignalRoad Rail

car

up

ccross

down train tcross up down

red red

green green

Crossing

train tcross

car

ccross

Transition graph

E E

E

E

E E

E

E E

E

1 2

4 5

8 6 9

11

3

E
7

car train

car

car

train

train

ccross

tcross

τ

τ

τ

τ

τ

τ

ccross

tcross

τ

Crossing

train

car

10 τ

CCS model of Peterson’s solution to mutual exclusion

B1f
def
= b1rf.B1f + b1wf.B1f + b1wt.B1t

B1t
def
= b1rt.B1t + b1wt.B1t + b1wf.B1f

B2f
def
= b2rf.B2f + b2wf.B2f + b2wt.B2t

B2t
def
= b2rt.B2t + b2wt.B2t + b2wf.B2f

K1
def
= kr1.K1 + kw1.K1 + kw2.K2

K2
def
= kr2.K2 + kw2.K2 + kw1.K1

P1
def
= b1wt.req1.kw2.P11

P11
def
= b2rt.P11 + b2rf.P12 + kr2.P11 + kr1.P12

P12
def
= enter1.exit1.b1wf.P1

P2
def
= b2wt.req2.kw1.P21

P21
def
= b1rf.P22 + b1rt.P21 + kr1.P21 + kr2.P22

P22
def
= enter2.exit2.b2wf.P2

Peterson ≡ (P1 | P2 | K1 | B1f | B2f)\L

L all actions except reqi, enteri and exiti

Protocol that may lose messages

Sender
def
= in(x).sm(x).Send1(x)

Send1(x)
def
= ms.sm(x).Send1(x) + ok.Sender

Medium
def
= sm(y).Med1(y)

Med1(y)
def
= mr(y).Medium + τ.ms.Medium

Receiver
def
= mr(x).out(x).ok.Receiver

Protocol ≡ (Sender | Medium | Receiver)\{sm, ms, mr, ok}

