Communication and Concurrency
Lecture 16

Colin Stirling (cps)
School of Informatics

14th November 2013

The (strong) bisimilarity problem

» Given: two processes E and F

The (strong) bisimilarity problem

» Given: two processes E and F
» Decide: is E ~ F 7 i.e., are E and F (strongly) bisimilar ?

The (strong) bisimilarity problem

» Given: two processes E and F
» Decide: is E ~ F 7 i.e., are E and F (strongly) bisimilar ?
» Assume both Tg and TF are finite

The (strong) bisimilarity problem

» Given: two processes E and F

» Decide: is E ~ F 7 i.e., are E and F (strongly) bisimilar ?
» Assume both Tg and TF are finite

» Observation: whether E ~ F depends only on Tg and Tg¢

The (strong) bisimilarity problem

Given: two processes E and F

Decide: is E ~ F ? i.e., are E and F (strongly) bisimilar ?
Assume both Tg and TF are finite

Observation: whether E ~ F depends only on Tg and T¢

Restrict relations to subsets of S x S, where S C Sg U Sf.
Notice that S is finite

Outline of the algorithm:

vV v.v. v Y

v

The (strong) bisimilarity problem

Given: two processes E and F

Decide: is E ~ F ? i.e., are E and F (strongly) bisimilar ?
Assume both Tg and TF are finite

Observation: whether E ~ F depends only on Tg and T¢

Restrict relations to subsets of S x S, where S C Sg U Sf.
Notice that S is finite
Outline of the algorithm:

» Compute ~ C S x S.

vV v.v. v Y

v

The (strong) bisimilarity problem

Given: two processes E and F

Decide: is E ~ F ? i.e., are E and F (strongly) bisimilar ?
Assume both Tg and TF are finite

Observation: whether E ~ F depends only on Tg and T¢

Restrict relations to subsets of S x S, where S C Sg U Sf.
Notice that S is finite
Outline of the algorithm:

» Compute ~ C S x S.
» Check if (E,F) e~.

vV v.v. v Y

v

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.
» E ~,11 F if and only if for every action a,

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.

» E ~p,.1 F if and only if for every action a,

» if E 25 E’ then F - F’ for some F’ such that E/ ~, F’,
and

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.

» E ~p,.1 F if and only if for every action a,

» if E 25 E’ then F - F’ for some F’ such that E/ ~, F’,
and
» if F 5 F’ then E 25 E’ for some E’ such that E/ ~, F’.

Bisimilarity up to n

» Recall that ~ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

» For each n > 0, the relation ~, between pairs of processes is
inductively defined as follows:

» E ~g F forall E and F.

» E ~p,.1 F if and only if for every action a,

» if E 25 E’ then F - F’ for some F’ such that E/ ~, F’,
and
» if F 5 F’ then E 25 E’ for some E’ such that E/ ~, F’.

E ~n+1 F

la la
E ~, F

Key result

Proposition For all n > 0,
1. ~p D~
2. ~pDr~opy1, and

3. 1f ~p=rpp1, then ~p=n

Key result

Proposition For all n > 0,
1. ~p D~
2. ~pDr~opy1, and

3. 1f ~p=rpp1, then ~p=n

» Proof: 1. By induction on n.

Key result

Proposition For all n > 0,
1. ~p D~
2. ~pDr~opy1, and

3. If ~p=repy1, then ~p=n

» Proof: 1. By induction on n.
» Base: n=0. Trivial, because E ~¢ F for all E, F

» Step: Let E ~ F. We prove E ~,1 F.
Let E - E’ be an arbitrary transition of E

Key result

Proposition For all n > 0,

1.
2.
3.

~p 2,
~p2~pt1, and

|f Nn:Nn+1, then N =

» Proof: 1. By induction on n.
» Base: n=0. Trivial, because E ~¢ F for all E, F
» Step: Let E ~ F. We prove E ~,.1 F.

Let E - E’ be an arbitrary transition of E
Since E ~ F, there is a transition F —— F’ of F such that
E’' ~ F'. By induction hypothesis, E' ~, F'.

Key result

Proposition For all n > 0,
1. ~p D~
2. ~pDr~opy1, and

3. If ~p=repy1, then ~p=n

» Proof: 1. By induction on n.

» Base: n=0. Trivial, because E ~q F for all E, F

» Step: Let E ~ F. We prove E ~, 1 F.
Let E - E’ be an arbitrary transition of E
Since E ~ F, there is a transition F —— F’ of F such that
E’' ~ F'. By induction hypothesis, E' ~, F'.
Similarly we prove that for every transition F —— F’ of F
there is a transition E —— E’ of E such that E/ ~,, F'.
By definition of ~,11, we have E ~, 1 F

Proof of 2

» 2. ~pD~py1. By induction on n.

Proof of 2

» 2. ~pD~py1. By induction on n.

» Base: n=0. Trivial, because E ~qg F for all E, F.

Proof of 2

» 2. ~pD~py1. By induction on n.
» Base: n=0. Trivial, because E ~¢ F for all E, F.

» Step: We assume ~p, O ~,11 and prove ~p11 O ~pyo

Proof of 2

» 2. ~pD~py1. By induction on n.
» Base: n=0. Trivial, because E ~¢ F for all E, F.
» Step: We assume ~p, O ~,11 and prove ~p11 O ~pyo

» Assume E ~,.5 F. We prove E ~,1 F.
Let £ -2 E’ be an arbitrary transition of E.

Proof of 2

2. ~p D~ pt1. By induction on n.
Base: n= 0. Trivial, because E ~¢ F for all E, F.

Step: We assume ~, O ~p.1 and prove ~p11 O ~pio

vV v v Y

Assume E ~, o F. We prove E ~,41 F.
Let £ -2 E’ be an arbitrary transition of E.

v

Since E ~, 2 F, there is a transition F —2, F' of F such that
E' ~,1 F.

Proof of 2

2. ~p D~ pt1. By induction on n.
Base: n= 0. Trivial, because E ~¢ F for all E, F.

Step: We assume ~, O ~p.1 and prove ~p11 O ~pio

vV v v Y

Assume E ~, o F. We prove E ~,41 F.
Let £ -2 E’ be an arbitrary transition of E.

v

Since E ~, 2 F, there is a transition F —2, F' of F such that
E' ~,1 F.

By induction hypothesis, E' ~, F'.

v

Proof of 2

vV v v Y

2. ~p D~ pt1. By induction on n.
Base: n= 0. Trivial, because E ~¢ F for all E, F.
Step: We assume ~, O ~p.1 and prove ~p11 O ~pio

Assume E ~, o F. We prove E ~,41 F.
Let £ -2 E’ be an arbitrary transition of E.

Since E ~, 2 F, there is a transition F —2, F' of F such that
E' ~,1 F.

» By induction hypothesis, E' ~, F’.

» Similarly we prove that for every transition F —— F’ of F

there is a transition E —— E’ of E such that E/ ~,, F'.
So E ~p+1 F.

Proof of 3

> 3. If ~p=~pi1, then ~p=~.

Proof of 3

> 3. If ~p=r~pi1, then ~p=r.

» We assume ~,=~,1, and prove ~,=n~

Proof of 3

» 3. If ~p=r~pyi1, then ~p=r~.
» We assume ~,=~ 1, and prove ~p=r~
» We have ~,D~ by (1)

Proof of 3

» 3. If ~p=r~pyi1, then ~p=r~.
» We assume ~,=~ 1, and prove ~p=r~
» We have ~,D~ by (1)

» To prove ~,C~, we show that ~, is a bisimulation.

Proof of 3

3. If ~p=r~py1, then ~p=n~.

We assume ~p=~p;1, and prove ~,=n~

We have ~,2O~ by (1)

To prove ~,C~, we show that ~, is a bisimulation.

Let E ~, F, and let E =25 E’ be an arbitrary transition of E.
Since ~p=~,11, we have E ~, 1 F, and so there is a
transition F — F’ of F such that E/ ~, F'.

vV vVv.v.v Yy

Proof of 3

vV vVv.v.v Yy

3. If ~p=r~py1, then ~p=n~.

We assume ~p=~p;1, and prove ~,=n~

We have ~,2O~ by (1)

To prove ~,C~, we show that ~, is a bisimulation.

Let E ~, F, and let E =25 E’ be an arbitrary transition of E.
Since ~,=~ 11, we have E ~, 1 F, and so there is a
transition F — F’ of F such that E/ ~, F'.

Similarly we prove that for every transition F —— F’ of F
there is a transition E —— E’ of E such that E/ ~,, F'.
So ~, is a bisimulation.

Scheme for the computation of ~

> Compute ~Q,~1,~2, ... until ~i=YigT.

Scheme for the computation of ~

> Compute ~Q,~1,~2, ... until ~i=YigT.
» Output ~;.

Scheme for the computation of ~

» Compute ~q, ~1,~2,... until ~i=YigT.
» Output ~;.

» Correctness: Part (3) of the Proposition.

Scheme for the computation of ~

> Compute ~Q,~1,~2, ... until ~i=YigT.
» Output ~;.
» Correctness: Part (3) of the Proposition.

» Termination: Assume the procedure does not terminate.
Then, by part (2) of the Proposition, we have an infinite chain

~ODYLIONYD L

This contradicts the finiteness of S.

Partition refinement algorithms

» ldea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

Partition refinement algorithms

» ldea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

» Recall that ~ is an equivalence relation

Partition refinement algorithms

» ldea: think of ~ not as a set of pairs, but as a set of
equivalence classes.
» Recall that ~ is an equivalence relation

» Proposition: ~ is the coarsest partition of S satisfying the
following property: For every element {Eq,... Ex} C S of the
partition, and for every action a:

Partition refinement algorithms

» ldea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

» Recall that ~ is an equivalence relation

» Proposition: ~ is the coarsest partition of S satisfying the
following property: For every element {Eq,... Ex} C S of the
partition, and for every action a:

» either none of Ey,... E, can do an a, or,

Partition refinement algorithms

» Idea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

» Recall that ~ is an equivalence relation

» Proposition: ~ is the coarsest partition of S satisfying the
following property: For every element {Eq,... Ex} C S of the
partition, and for every action a:

» either none of Ey,... E, can do an a, or,

» all of Eq,...Ex can do an a, and there are processes Fq, ..., Fj
such that E; — F; for every 1 </ < k, and moreover
{F1,...Fx} isincluded in an element of the partition.

Partition refinement algorithms

» Idea: think of ~ not as a set of pairs, but as a set of
equivalence classes.

» Recall that ~ is an equivalence relation

» Proposition: ~ is the coarsest partition of S satisfying the
following property: For every element {Eq,... Ex} C S of the
partition, and for every action a:

» either none of Ey,... E, can do an a, or,

» all of Eq,...Ex can do an a, and there are processes Fq, ..., Fj
such that E; — F; for every 1 </ < k, and moreover
{F1,...Fx} isincluded in an element of the partition.

» Proof sketch: Show that the elements of a partition satisfy
this property if and only if they are the equivalence classes of
a bisimulation.
Show that the coarsest partition corresponds to ~.

Splitting
Given two elements Py, P, of a partition of S and an action a, the
result of splitting P; w.r.t P, and a are the sets

P, = {E€Pi|E -5 Fforsome FeP,}
Pl = Pi\P

Splitting
Given two elements Py, P, of a partition of S and an action a, the
result of splitting P; w.r.t P, and a are the sets

P, = {EcP,|E-2Fforsome FeP,}
Pl = Pi\P

Input: Tg, Tk
Output: equivalence classes of ~ on S

Initialize N := {S};

Iterate: Choose an action a and Py, P, € Tl
Split P; with respect to P, and a;

M= M\{P})U{PL, PI};
until a fixpoint is reached;

return I

Complexity

» There are at most |S| — 1 splittings.

Complexity

» There are at most |S| — 1 splittings.

» Each splitting can be performed in time
O(|S| +16]), where 6 = dg U 6F (complicated).

Complexity

» There are at most |S| — 1 splittings.
» Each splitting can be performed in time

O(|S| +19]), where 6 = dg U 6F (complicated).
» So the running time is O(|S| - (|S| + |9])

Complexity

» There are at most |S| — 1 splittings.

» Each splitting can be performed in time

O(|S| +19]), where 6 = dg U 6F (complicated).
» So the running time is O(|S| - (|S| + |9])
» Best known algorithm: O(|d] - log(|S]))

The weak bisimilarity problem

» Given: two processes E and F.

The weak bisimilarity problem

» Given: two processes E and F.

» Decide: is E = F? i.e., are E and F weakly bisimilar ?

The weak bisimilarity problem

» Given: two processes E and F.
» Decide: is E = F7? i.e., are E and F weakly bisimilar ?

» Assume both Tg and Tf are finite.

The weak bisimilarity problem

» Given: two processes E and F.
» Decide: is E = F? i.e., are E and F weakly bisimilar ?
» Assume both Tg and Tf are finite.

» We consider the labelled transition system (S, ¢), where
S=5£USF and § = 6g U f.

The weak bisimilarity problem

Given: two processes E and F.
Decide: is E =~ F? i.e., are E and F weakly bisimilar ?
Assume both Tg and TF are finite.

vV v vy

We consider the labelled transition system (S, 0), where
S=5£USF and § = 6g U f.

All relations we use are subsets of S x S where S is finite.

v

Main idea

» The definition of weak bisimilarity is very similar to that of
strong bisimilarity:

replace = by — everywhere.

Main idea

» The definition of weak bisimilarity is very similar to that of
strong bisimilarity:
replace = by — everywhere.

» It follows:
E and F are weakly bisimilar if and only if they are
strongly bisimilar “with respect to the transition
system (S,0)” obtained by replacing = through —
in the transition system (S,0).

Main idea

» The definition of weak bisimilarity is very similar to that of
strong bisimilarity:
replace = by — everywhere.

> It follows:
E and F are weakly bisimilar if and only if they are
strongly bisimilar “with respect to the transition
system (S,)" obtained by replacing = through —
in the transition system (S,0).

» Scheme of the algorithm:

Main idea

» The definition of weak bisimilarity is very similar to that of
strong bisimilarity:
replace = by — everywhere.

> It follows:
E and F are weakly bisimilar if and only if they are
strongly bisimilar “with respect to the transition
system (S,)" obtained by replacing = through —
in the transition system (S,0).

» Scheme of the algorithm:
» Compute (S, 8) such that for every action a (including 7) and
every pair of states 5,5’ € S, s — s’ in (5,3) if and only if
ENG
s=s"in (S,9).

Main idea

» The definition of weak bisimilarity is very similar to that of
strong bisimilarity:
replace = by — everywhere.

> It follows:
E and F are weakly bisimilar if and only if they are
strongly bisimilar “with respect to the transition
system (S,)" obtained by replacing = through —
in the transition system (S,0).

» Scheme of the algorithm:
» Compute (S, 8) such that for every action a (including 7) and
every pair of states 5,5’ € S, s — s’ in (S,) if and only if
ENG
s=s"in (S,9). A
» Check if E ~ F “with respect to the transition system (S,0)".

Computing (S, 9)

We consider an abstract algorithm first

Input: (5,5)A

Output: (S,0)

Initialize § := 6 U {(s,7,s) | s € S};

Iterate: For every action a and s,s’,s" € S
If (s,a,s') €6 and (s, 7,5") € or

(s,7,s') € b and (s',a,5") € b
then add (s,a,s”) to &
until a fixpoint is reached,;

return (S,)

Correctness and complexity

» Correctness: Exercise

Correctness and complexity

» Correctness: Exercise
» Complexity:

Correctness and complexity

» Correctness: Exercise
» Complexity:
» O(|S|? - |A|) iterations

Correctness and complexity

» Correctness: Exercise
» Complexity:
» O(|S|? - |A|) iterations
» O(|S]® - |A]) time per iteration

Correctness and complexity

» Correctness: Exercise
» Complexity:
» O(|S|? - |A|) iterations
» O(|S]® - |A]) time per iteration
» Overall time complexity: O(|S|® - |AJ?)

Correctness and complexity

» Correctness: Exercise
» Complexity:
» O(|S|? - |A|) iterations
» O(|S]® - |A]) time per iteration
» Overall time complexity: O(|S|® - |AJ?)
» Space complexity: O(|S|? - |A|)

A better algorithm

Input: (S,6) Output: (S,9)

Initialize & := 0;
Initialize p .= U {(s,7,s) | s € S};
while p # () do
remove t = (s,a,s’) from p;
ifte¢o then
add t to d;
for aII s” such that (s”,7,s) €6

if (s",a,5') ¢ p

then add (s”,a,s) to p;

for all s” such that (s/,7,5") €)

if (s,a,s")¢p
then add (s, a,s”) to p;

return (S,)

Correctness (w.r.t = with respect to)

» Termination. Every iteration removes an element from p, but
only finitely many add elements to it (because of line 5).

Correctness (w.r.t = with respect to)

» Termination. Every iteration removes an element from p, but
only finitely many add elements to it (because of line 5).

> If (s,a,s') € § after termination, then s == s’ w.r.t §. (Easy)

Correctness (w.r.t = with respect to)

» Termination. Every iteration removes an element from p, but
only finitely many add elements to it (because of line 5).

> If (s,a,s') € § after termination, then s == s’ w.r.t §. (Easy)

> If s == s’ w.r.t §, then (s,a,s') € § after termination.
Proof: By induction on the length n of the shortest sequence
showing s == s’. The base n = 0 is easy (this is the case
s=s"and a= 7). For n > 0, we consider two cases:

Correctness (w.r.t = with respect to)

» Termination. Every iteration removes an element from p, but
only finitely many add elements to it (because of line 5).

> If (s,a,s") € § after termination, then s == s’ w.r.t §. (Easy)

> If s == s’ w.rt §, then (s,a,s') € § after termination.
Proof: By induction on the length n of the shortest sequence
showing s == s’. The base n = 0 is easy (this is the case
s=s"and a= 7). For n > 0, we consider two cases:

> There is a s” such that (s,7,5”) € § and s” == s’ with
respect to 4. Since the shortest sequence showing s’/ == s’
has length n — 1, by induction hypothesis (s”, a,s’) is
eventually added to 4. Since any element that is moved to &
comes from p, (s”,a,s’) must be eventually added to p. By
lines 7-9, (s, a,s’) is also eventually added to p, and so to 5.

Correctness (w.r.t = with respect to)

>

Termination. Every iteration removes an element from p, but
only finitely many add elements to it (because of line 5).

If (s,a,s') € § after termination, then s == s’ w.r.t . (Easy)

If s == s’ w.r.t 6, then (s,a,s’) € § after termination.
Proof: By induction on the length n of the shortest sequence
showing s == s’. The base n = 0 is easy (this is the case
s=s"and a= 7). For n > 0, we consider two cases:

There is a s” such that (s,7,5”) € § and s” == s’ with
respect to 4. Since the shortest sequence showing s’/ == s’
has length n — 1, by induction hypothesis (s”, a,s’) is
eventually added to 4. Since any element that is moved to &
comes from p, (s”,a,s’) must be eventually added to p. By
lines 7-9, (s, a,s’) is also eventually added to p, and so to 5.

There is s” such that (s”,7,s') € § and s == s with respect
to 0. Analogous argument to the previous case, this time
using lines lines 10-12.

Time and space complexity

Time complexity:

1. Line 6 is executed O(|S|? - |A|) times.
No transition can be added to ¢ twice because of line 5. Since
there are at most |S| - |A| - |S| transitions, the bound follows.

2. Lines 8 and 11 are executed O(|S|3 - |A|) times.
They are executed at most once for each combination
s,s',s" a, because no element is added to § twice.

3. Line 4 is executed O(|S]3 - |A|) times.
By 2., O(|S|3 - |A|) elements are added to p during the
execution of the algorithm, and so O(|S|3 - |A|) elements are
have been removed from it after termination.

4. Lines 1, 2, and 13 take together O(|S|? - |A]) time.

5. The overall time complexity is O(|S|3 - |A|).

Space complexity: since p and $ do not contain duplicates, they
require O(|S|? - |A|) space.

