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The (strong) bisimilarity problem

I Given: two processes E and F

I Decide: is E ∼ F ? i.e., are E and F (strongly) bisimilar ?

I Assume both TE and TF are finite

I Observation: whether E ∼ F depends only on TE and TF

I Restrict relations to subsets of S × S , where S ⊆ SE ∪ SF .
Notice that S is finite

I Outline of the algorithm:

I Compute ∼ ⊆ S × S .
I Check if (E ,F ) ∈∼.
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Bisimilarity up to n

I Recall that ∼ is the largest bisimulation or the union of all
bisimulations, and that it is a bisimulation itself.

I For each n ≥ 0, the relation ∼n between pairs of processes is
inductively defined as follows:

I E ∼0 F for all E and F .
I E ∼n+1 F if and only if for every action a,

I if E
a−→ E ′ then F

a−→ F ′ for some F ′ such that E ′ ∼n F ′,
and

I if F
a−→ F ′ then E

a−→ E ′ for some E ′ such that E ′ ∼n F ′.

E ∼n+1 F
↓ a ↓ a
E ′ ∼n F ′
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Key result

Proposition For all n ≥ 0,

1. ∼n⊇∼,

2. ∼n⊇∼n+1, and

3. If ∼n=∼n+1, then ∼n=∼.

I Proof: 1. By induction on n.

I Base: n = 0. Trivial, because E ∼0 F for all E ,F

I Step: Let E ∼ F . We prove E ∼n+1 F .
Let E

a−→ E ′ be an arbitrary transition of E

Since E ∼ F , there is a transition F
a−→ F ′ of F such that

E ′ ∼ F ′. By induction hypothesis, E ′ ∼n F ′.
Similarly we prove that for every transition F

a−→ F ′ of F
there is a transition E

a−→ E ′ of E such that E ′ ∼n F ′.
By definition of ∼n+1, we have E ∼n+1 F
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Proof of 3

I 3. If ∼n=∼n+1, then ∼n=∼.

I We assume ∼n=∼n+1, and prove ∼n=∼.

I We have ∼n⊇∼ by (1)

I To prove ∼n⊆∼, we show that ∼n is a bisimulation.

I Let E ∼n F , and let E
a−→ E ′ be an arbitrary transition of E .

Since ∼n=∼n+1, we have E ∼n+1 F , and so there is a
transition F

a−→ F ′ of F such that E ′ ∼n F ′.

I Similarly we prove that for every transition F
a−→ F ′ of F

there is a transition E
a−→ E ′ of E such that E ′ ∼n F ′.
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Scheme for the computation of ∼

I Compute ∼0,∼1,∼2, . . . until ∼i=∼i+1.

I Output ∼i .

I Correctness: Part (3) of the Proposition.

I Termination: Assume the procedure does not terminate.
Then, by part (2) of the Proposition, we have an infinite chain

∼0⊃∼1⊃∼2 . . .

This contradicts the finiteness of S .
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Partition refinement algorithms

I Idea: think of ∼ not as a set of pairs, but as a set of
equivalence classes.

I Recall that ∼ is an equivalence relation
I Proposition: ∼ is the coarsest partition of S satisfying the

following property: For every element {E1, . . .Ek} ⊆ S of the
partition, and for every action a:

I either none of E1, . . .Ek can do an a, or,
I all of E1, . . .Ek can do an a, and there are processes F1, . . . ,Fk

such that Ei
a−→ Fi for every 1 ≤ i ≤ k, and moreover

{F1, . . .Fk} is included in an element of the partition.

I Proof sketch: Show that the elements of a partition satisfy
this property if and only if they are the equivalence classes of
a bisimulation.
Show that the coarsest partition corresponds to ∼.
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Splitting
Given two elements P1,P2 of a partition of S and an action a, the
result of splitting P1 w.r.t P2 and a are the sets

P ′
1 = {E ∈ P1 | E

a−→ F for some F ∈ P2 }
P ′′

1 = P1 \ P ′
1

Input: TE , TF

Output: equivalence classes of ∼ on S

Initialize Π := {S};

Iterate: Choose an action a and P1,P2 ∈ Π
Split P1 with respect to P2 and a;

Π = (Π \ {P1}) ∪ {P ′
1,P

′′
1 };

until a fixpoint is reached;

return Π
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Complexity

I There are at most |S | − 1 splittings.

I Each splitting can be performed in time
O(|S |+ |δ|), where δ = δE ∪ δF (complicated).

I So the running time is O(|S | · (|S |+ |δ|)
I Best known algorithm: O(|δ| · log(|S |))
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The weak bisimilarity problem

I Given: two processes E and F .

I Decide: is E ≈ F? i.e., are E and F weakly bisimilar ?

I Assume both TE and TF are finite.

I We consider the labelled transition system (S , δ), where
S = SE ∪ SF and δ = δE ∪ δF .

I All relations we use are subsets of S × S where S is finite.
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Main idea

I The definition of weak bisimilarity is very similar to that of
strong bisimilarity:

replace ⇒ by → everywhere.

I It follows:
E and F are weakly bisimilar if and only if they are
strongly bisimilar “with respect to the transition
system (S , δ̂)” obtained by replacing ⇒ through →
in the transition system (S , δ).

I Scheme of the algorithm:

I Compute (S , δ̂) such that for every action a (including τ) and

every pair of states s, s ′ ∈ S , s
a−→ s ′ in (S , δ̂) if and only if

s
a

=⇒ s ′ in (S , δ).
I Check if E ∼ F “with respect to the transition system (S , δ̂)”.
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Computing (S , δ̂)

We consider an abstract algorithm first

Input: (S , δ)

Output: (S , δ̂)

Initialize δ̂ := δ ∪ {(s, τ, s) | s ∈ S};

Iterate: For every action a and s, s ′, s ′′ ∈ S

If (s, a, s ′) ∈ δ̂ and (s ′, τ, s ′′) ∈ δ̂ or

(s, τ, s ′) ∈ δ̂ and (s ′, a, s ′′) ∈ δ̂

then add (s, a, s ′′) to δ̂

until a fixpoint is reached;

return (S , δ̂)



Correctness and complexity

I Correctness: Exercise

I Complexity:

I O(|S |2 · |A|) iterations
I O(|S |3 · |A|) time per iteration

I Overall time complexity: O(|S |5 · |A|2)

I Space complexity: O(|S |2 · |A|)
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A better algorithm

Input: (S , δ) Output: (S , δ̂)

1 Initialize δ̂ := ∅;
2 Initialize ρ := δ ∪ {(s, τ, s) | s ∈ S};
3 while ρ 6= ∅ do

4 remove t = (s, a, s ′) from ρ;

5 if t /∈ δ̂ then

6 add t to δ̂;

7 for all s ′′ such that (s ′′, τ, s) ∈ δ̂
8 if (s ′′, a, s ′) /∈ ρ
9 then add (s ′′, a, s ′) to ρ;

10 for all s ′′ such that (s ′, τ, s ′′) ∈ δ̂
11 if (s, a, s ′′) /∈ ρ
12 then add (s, a, s ′′) to ρ;

13 return (S , δ̂)



Correctness (w.r.t = with respect to)

I Termination. Every iteration removes an element from ρ, but
only finitely many add elements to it (because of line 5).

I If (s, a, s ′) ∈ δ̂ after termination, then s
a

=⇒ s ′ w.r.t δ. (Easy)

I If s
a

=⇒ s ′ w.r.t δ, then (s, a, s ′) ∈ δ̂ after termination.
Proof: By induction on the length n of the shortest sequence
showing s

a
=⇒ s ′. The base n = 0 is easy (this is the case

s = s ′ and a = τ). For n > 0, we consider two cases:

I There is a s ′′ such that (s, τ, s ′′) ∈ δ and s ′′ a
=⇒ s ′ with

respect to δ. Since the shortest sequence showing s ′′ a
=⇒ s ′

has length n − 1, by induction hypothesis (s ′′, a, s ′) is
eventually added to δ̂. Since any element that is moved to δ
comes from ρ, (s ′′, a, s ′) must be eventually added to ρ. By
lines 7-9, (s, a, s ′) is also eventually added to ρ, and so to δ̂.

I There is s ′′ such that (s ′′, τ, s ′) ∈ δ and s
a

=⇒ s ′′ with respect
to δ. Analogous argument to the previous case, this time
using lines lines 10-12.
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Time and space complexity

Time complexity:

1. Line 6 is executed O(|S |2 · |A|) times.
No transition can be added to δ̂ twice because of line 5. Since
there are at most |S | · |A| · |S | transitions, the bound follows.

2. Lines 8 and 11 are executed O(|S |3 · |A|) times.
They are executed at most once for each combination
s, s ′, s ′′, a, because no element is added to δ̂ twice.

3. Line 4 is executed O(|S |3 · |A|) times.
By 2., O(|S |3 · |A|) elements are added to ρ during the
execution of the algorithm, and so O(|S |3 · |A|) elements are
have been removed from it after termination.

4. Lines 1, 2, and 13 take together O(|S |2 · |A|) time.

5. The overall time complexity is O(|S |3 · |A|).

Space complexity: since ρ and δ̂ do not contain duplicates, they
require O(|S |2 · |A|) space.


