Labelled transition systems

► A labelled transition system on a set of actions A is a pair $T = (S, \delta)$, where Lecture 15 Colin Stirling (cps) School of Informatics

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Communication and Concurrency

11th November 2013

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Labelled transition systems

- ► A labelled transition system on a set of actions A is a pair $T = (S, \delta)$, where
- ► *S* is a set of states.
- $\delta \subseteq S \times A \times S$ is the transition relation

Labelled transition systems

- ► A labelled transition system on a set of actions A is a pair $T = (S, \delta)$, where
- ► *S* is a set of states,
- $\delta \subseteq S \times A \times S$ is the transition relation
- Restrict to finite transition systems: where A and S (and δ) are finite

Labelled transition systems

- A labelled transition system on a set of actions A is a pair $T = (S, \delta)$, where
- ► *S* is a set of states,
- $\delta \subseteq S \times A \times S$ is the transition relation
- Restrict to finite transition systems: where A and S (and δ) are finite
- For process *E*, we denote by *T_E* = (*S_E*, δ_E) the labelled transition system associated to *E*, inductively defined as follows:

Labelled transition systems

- A labelled transition system on a set of actions A is a pair
 T = (S, δ), where
- ► S is a set of states,
- $\delta \subseteq S \times A \times S$ is the transition relation
- Restrict to finite transition systems: where A and S (and δ) are finite
- For process *E*, we denote by *T_E* = (*S_E*, δ_{*E*}) the labelled transition system associated to *E*, inductively defined as follows:

1. $E \in S_E$, and

Labelled transition systems

- A labelled transition system on a set of actions A is a pair
 T = (S, δ), where
- ► *S* is a set of states,
- $\delta \subseteq S \times A \times S$ is the transition relation
- Restrict to finite transition systems: where A and S (and δ) are finite
- For process *E*, we denote by *T_E* = (*S_E*, δ_{*E*}) the labelled transition system associated to *E*, inductively defined as follows:
 - 1. $E \in S_E$, and
 - 2. if $F \in S_E$, and $F \xrightarrow{a} G$, then $G \in S_E$ and $(F, a, G) \in \delta_E$.

Model checking CTL⁻

• Given: a process E, a formula ϕ of CTL⁻.

Model checking CTL⁻

Model checking CTL⁻

- Given: a process E, a formula ϕ of CTL⁻.
- **•** Decide: does *E* satisfies ϕ ?

- Given: a process *E*, a formula ϕ of CTL⁻.
- **Decide:** does *E* satisfies ϕ ?
- ▶ For convenience we add negation to CTL⁻

(ロ) (個) (目) (目) (日) (の)

Model checking CTL⁻

- Given: a process E, a formula ϕ of CTL⁻.
- **Decide:** does *E* satisfies ϕ ?
- ▶ For convenience we add negation to CTL⁻
- ▶ For formula ψ , $\llbracket \psi \rrbracket$ is the set of states of T_E satisfying ψ .

Model checking CTL⁻

- Given: a process *E*, a formula ϕ of CTL⁻.
- **•** Decide: does *E* satisfies ϕ ?
- ▶ For convenience we add negation to CTL⁻
- ▶ For formula ψ , $\llbracket \psi \rrbracket$ is the set of states of T_E satisfying ψ .
- ► Sketch of the algorithm:

Model checking CTL⁻

Model checking CTL⁻

- Given: a process E, a formula ϕ of CTL⁻.
- **•** Decide: does *E* satisfies ϕ ?
- ▶ For convenience we add negation to CTL[−]

• Given: a process *E*, a formula ϕ of CTL⁻.

▶ For convenience we add negation to CTL⁻

1. Compute the subformulas of ϕ

3. Answer: "*E* satisfies ϕ " iff $E \in \llbracket \phi \rrbracket$

▶ For formula ψ , $\llbracket \psi \rrbracket$ is the set of states of T_E satisfying ψ .

2. Compute $\llbracket \psi \rrbracket$ for each subformula ψ of ϕ , starting with the smallest subformulas and then with larger and larger

Decide: does *E* satisfies ϕ ?

► Sketch of the algorithm:

subformulas

- ▶ For formula ψ , $\llbracket \psi \rrbracket$ is the set of states of T_E satisfying ψ .
- Sketch of the algorithm:
 - 1. Compute the subformulas of ϕ

- Given: a process *E*, a formula ϕ of CTL⁻.
- **•** Decide: does *E* satisfies ϕ ?
- ▶ For convenience we add negation to CTL⁻
- ▶ For formula ψ , $\llbracket \psi \rrbracket$ is the set of states of T_E satisfying ψ .
- Sketch of the algorithm:
 - 1. Compute the subformulas of ϕ
 - 2. Compute $[\![\psi]\!]$ for each subformula ψ of $\phi,$ starting with the smallest subformulas and then with larger and larger subformulas

◆□ > < 個 > < E > < E > E の < O</p>

Model checking CTL⁻

- Computing $\llbracket \psi \rrbracket$: the easy cases
 - Because of the equivalences

we can assume that ϕ does not contain [K], AG or AF operators

Computing $\llbracket \psi \rrbracket$: the easy cases

Because of the equivalences

$$\begin{split} [K] \psi &\equiv \neg \langle K \rangle \neg \psi \\ \text{AG } \psi &\equiv \neg \text{EF } \neg \psi \\ \text{AF } \psi &\equiv \neg \text{EG } \neg \psi \end{split}$$

we can assume that ϕ does not contain [K], AG $\,$ or AF operators

$$\begin{bmatrix} \texttt{tt} \end{bmatrix} = S_E \\ \llbracket \texttt{ff} \end{bmatrix} = \emptyset \\ \begin{bmatrix} \psi_1 \land \psi_2 \end{bmatrix} = \llbracket \psi_1 \rrbracket \cap \llbracket \psi_2 \end{bmatrix} \\ \llbracket \psi_1 \lor \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \cup \llbracket \psi_2 \rrbracket \\ \llbracket \neg \psi \rrbracket = S_E \setminus \llbracket \psi \rrbracket \\ \llbracket \langle K \rangle \psi_1 \rrbracket = pre_K(\llbracket \psi_1 \rrbracket)$$

pre_K([[ψ₁]]) ^{def} = states from which some state in [[ψ₁]] can be reached through some action in K.

Computing [EF ψ_1]

Let pre() denote $pre_A()$

Input:
$$T_E$$
, $\llbracket \psi_1 \rrbracket$
Output $\llbracket EF \ \psi_1 \rrbracket$
Initialize $C := \llbracket \psi_1 \rrbracket$;
Iterate $C := C \cup pre(C)$
until a fixpoint is reached;
return C

Complexity: $O(|S_E| \cdot (|S_E| + |\delta_E|))$

Better algorithm: explore each state only once using depth-first or breadth-first search. (Complexity: $O(|S_E| + |\delta_E|))$

Computing $\llbracket \psi \rrbracket$: the easy cases

- Because of the equivalences
 - $$\begin{split} [\mathcal{K}]\psi &\equiv \neg \langle \mathcal{K} \rangle \neg \psi \\ \mathrm{AG} \ \psi &\equiv \neg \mathrm{EF} \ \neg \psi \\ \mathrm{AF} \ \psi &\equiv \neg \mathrm{EG} \ \neg \psi \end{split}$$

we can assume that ϕ does not contain [K], AG or AF operators

$$\begin{bmatrix} \texttt{tt} \end{bmatrix} = S_E \\ \begin{bmatrix} \texttt{ff} \end{bmatrix} = \emptyset \\ \begin{bmatrix} \psi_1 \land \psi_2 \end{bmatrix} = \llbracket \psi_1 \rrbracket \cap \llbracket \psi_2 \rrbracket \\ \llbracket \psi_1 \lor \psi_2 \rrbracket = \llbracket \psi_1 \rrbracket \cup \llbracket \psi_2 \rrbracket \\ \llbracket \neg \psi \rrbracket = S_E \setminus \llbracket \psi \rrbracket \\ \llbracket \langle K \rangle \psi_1 \rrbracket = pre_K (\llbracket \psi_1 \rrbracket)$$

pre_K([[ψ₁]]) ^{def} = states from which some state in [[ψ₁]] can be reached through some action in K.

• Complexity: $O(|S_E| + |\delta_E|)$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < のへの</p>

Computing [EG ψ_1]

Complexity: $O(|S_E| \cdot (|S_E| + |\delta_E|))$

Computing [EG ψ_1] II

An algorithm with $O(|S_E| + |\delta_E|)$ complexity:

- Compute D' := states of S_E without successors in $\llbracket \psi_1 \rrbracket$
- Compute the labelled transition system $T'_E = (\llbracket \psi_1 \rrbracket, \delta_E \cap (\llbracket \psi_1 \rrbracket \times A \times \llbracket \psi_1 \rrbracket)$
- Compute the set of states C that belong to some strongly connected component of T'_E.
- ► Using the algorithm for [[EF \u03c6₁]] case, compute the states from which some state in C ∪ D' can be reached (using transitions of T'_E only).

A formula φ has at most |φ| subformulas (where |φ| is the length of φ).

Complexity of the complete model-checking algorithm

A formula φ has at most |φ| subformulas (where |φ| is the length of φ).

• So the algorithms for the easy cases, for EF ψ , and for EG ψ have to be executed altogether at most $|\phi|$ times

Complexity of the complete model-checking algorithm

- A formula φ has at most |φ| subformulas (where |φ| is the length of φ).
- So the algorithms for the easy cases, for EF ψ , and for EG ψ have to be executed altogether at most $|\phi|$ times
- ► Each execution of one of the algorithms takes at most O(|S_E| + |δ_E|) time (using the fast algorithms).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Complexity of the complete model-checking algorithm

A formula φ has at most |φ| subformulas (where |φ| is the length of φ).

- \blacktriangleright So the algorithms for the easy cases, for EF $\psi,$ and for EG ψ have to be executed altogether at most $|\phi|$ times
- ► Each execution of one of the algorithms takes at most O(|S_E| + |δ_E|) time (using the fast algorithms).
- ► So the overall complexity is

$$O(|\phi| \cdot (|S_E| + |\delta_E|))$$

Fixpoint view of the algorithms

► The following equivalences hold:

$$\begin{array}{lll} \mathrm{EF} \ \phi & \equiv & \phi \lor \langle - \rangle \mathrm{EF} \ \phi \\ \mathrm{EG} \ \phi & \equiv & \phi \land (\langle - \rangle \mathrm{EG} \ \phi \lor [-] \mathrm{ff}) \end{array}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

Fixpoint view of the algorithms

► The following equivalences hold:

► So we have

$$\begin{bmatrix} \mathsf{EF} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cup \mathsf{pre}(\llbracket \mathsf{EF} \ \phi \rrbracket)$$
$$\begin{bmatrix} \mathsf{EG} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cap (\mathsf{pre}(\llbracket \mathsf{EG} \ \phi \rrbracket) \cup \llbracket [-] \mathtt{ff} \rrbracket)$$

Fixpoint view of the algorithms

► The following equivalences hold:

$$\begin{array}{rcl} \mathrm{EF} \ \phi & \equiv & \phi \lor \langle - \rangle \mathrm{EF} \ \phi \\ \\ \mathrm{EG} \ \phi & \equiv & \phi \land (\langle - \rangle \mathrm{EG} \ \phi \lor [-] \mathrm{ff}) \end{array}$$

So we have

 $\begin{bmatrix} \mathsf{EF} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cup \mathsf{pre}(\llbracket \mathsf{EF} \ \phi \rrbracket)$ $\begin{bmatrix} \mathsf{EG} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cap (\mathsf{pre}(\llbracket \mathsf{EG} \ \phi \rrbracket) \cup \llbracket [-] \mathtt{ff} \rrbracket)$

▶ and so [EF ϕ] and [EG ϕ] are solutions of the equations

$$\begin{array}{lll} X & = & \llbracket \phi \rrbracket \cup \mathit{pre}(X) & \stackrel{\mathrm{def}}{=} \mathit{ef}(X) \\ X & = & \llbracket \phi \rrbracket \cap (\mathit{pre}(X) \cup \llbracket \llbracket - \rrbracket \mathtt{ff} \rrbracket & \stackrel{\mathrm{def}}{=} \mathit{eg}(X) \end{array}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

Fixpoint view of the algorithms

► The following equivalences hold:

$$\begin{array}{lll} \mathrm{EF} \ \phi & \equiv & \phi \lor \langle - \rangle \mathrm{EF} \ \phi \\ \mathrm{EG} \ \phi & \equiv & \phi \land (\langle - \rangle \mathrm{EG} \ \phi \lor [-] \mathrm{ff}) \end{array}$$

► So we have

 $\begin{bmatrix} \mathsf{EF} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cup \operatorname{pre}(\llbracket \mathsf{EF} \ \phi \rrbracket)$ $\begin{bmatrix} \mathsf{EG} \ \phi \end{bmatrix} = \llbracket \phi \rrbracket \cap (\operatorname{pre}(\llbracket \mathsf{EG} \ \phi \rrbracket) \cup \llbracket [-] \mathtt{ff} \rrbracket)$

▶ and so [EF ϕ] and [EG ϕ] are solutions of the equations

X	=	$\llbracket \phi rbracket \cup \textit{pre}(X)$	$\stackrel{\mathrm{def}}{=} ef(X)$
X	=	$\llbracket \phi \rrbracket \cap (\mathit{pre}(X) \cup \llbracket [-] \mathtt{ff} \rrbracket$	$\stackrel{\mathrm{def}}{=} eg(X)$

▶ These solutions are fixpoints of the mappings *ef* and *eg*.

Which solutions?

Proposition: [[EF ϕ]] is the smallest solution (least fixpoint) of X = ef(X). Proof: Notice that [[EF ϕ]] = $\bigcup_{i\geq 0} pre^i([\![\phi]\!])$, where $pre^0([\![\phi]\!]) \stackrel{\text{def}}{=} [\![\phi]\!]$. Let X_0 be an arbitrary solution.

We prove $pre^{i}(\llbracket \phi \rrbracket) \subseteq X_0$ for every $i \ge 0$ by induction on *i*.

Which solutions?

Proposition: [[EF ϕ]] is the smallest solution (least fixpoint) of X = ef(X).

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへぐ

Which solutions?

Proposition: [EF ϕ] is the smallest solution (least fixpoint) of X = ef(X).

Proof: Notice that $\llbracket EF \phi \rrbracket = \bigcup_{i \ge 0} pre^i(\llbracket \phi \rrbracket)$, where $pre^0(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \llbracket \phi \rrbracket$. Let X_0 be an arbitrary solution. We prove $pre^i(\llbracket \phi \rrbracket) \subseteq X_0$ for every $i \ge 0$ by induction on i. Base: i = 0. Obvious from $X_0 = \llbracket \phi \rrbracket \cup$ "something". Step: Assume $pre^i(\llbracket \phi \rrbracket) \subseteq X_0$. Then:

 $pre^{i+1}(\llbracket \phi \rrbracket)$ $= pre(pre^{i}(\llbracket \phi \rrbracket)) \quad (\text{definition of } pre)$ $\subseteq pre(X_{0}) \quad (\text{induction hypothesis})$ $\subseteq X_{0} \quad (X_{0} = pre(X_{0}) \cup \text{``something''})$

Which solutions?

Proposition: $\llbracket EF \phi \rrbracket$ is the smallest solution (least fixpoint) of X = ef(X). Proof: Notice that $\llbracket EF \phi \rrbracket = \bigcup_{i \ge 0} pre^i(\llbracket \phi \rrbracket)$, where $pre^0(\llbracket \phi \rrbracket) \stackrel{\text{def}}{=} \llbracket \phi \rrbracket$. Let X_0 be an arbitrary solution. We prove $pre^i(\llbracket \phi \rrbracket) \subseteq X_0$ for every $i \ge 0$ by induction on i. Base: i = 0. Obvious from $X_0 = \llbracket \phi \rrbracket \cup$ "something". Step: Assume $pre^i(\llbracket \phi \rrbracket) \subseteq X_0$. Then:

$$pre^{i+1}(\llbracket \phi \rrbracket)$$

$$= pre(pre^{i}(\llbracket \phi \rrbracket)) \quad (\text{definition of } pre)$$

$$\subseteq pre(X_{0}) \qquad (\text{induction hypothesis})$$

$$\subseteq X_{0} \qquad (X_{0} = pre(X_{0}) \cup \text{``something''})$$

Proposition: [[EG ϕ]] is the largest solution (greatest fixpoint) of X = eg(X). Proof: Exercise

Fixpoint algorithms

Fixpoint algorithms

▶ The mappings ef(X) and eg(X) are monotonic, i.e., if $X \subseteq Y$, then $ef(X) \subseteq ef(Y)$ and $eg(X) \subseteq eg(Y)$

・ ロ ト ・ 回 ト ・ 三 ト ・ 三 ・ うへぐ

- The mappings ef(X) and eg(X) are monotonic, i.e., if X ⊆ Y, then ef(X) ⊆ ef(Y) and eg(X) ⊆ eg(Y)
- Given a finite set S and a monotonic mapping $m: 2^S \rightarrow 2^S$,

Fixpoint algorithms

- The mappings ef(X) and eg(X) are monotonic, i.e., if $X \subseteq Y$, then $ef(X) \subseteq ef(Y)$ and $eg(X) \subseteq eg(Y)$
- Given a finite set S and a monotonic mapping $m: 2^S \rightarrow 2^S$,
- ► the least fixpoint of *m* exists, is unique, and can be calculated by iteratively computing Ø, m(Ø), m²(Ø), ... until mⁱ(Ø) = mⁱ⁺¹(Ø). The least fixpoint is mⁱ(Ø);

Fixpoint algorithms

- ▶ The mappings ef(X) and eg(X) are monotonic, i.e., if $X \subseteq Y$, then $ef(X) \subseteq ef(Y)$ and $eg(X) \subseteq eg(Y)$
- Given a finite set S and a monotonic mapping $m: 2^S \rightarrow 2^S$,
- ► the least fixpoint of *m* exists, is unique, and can be calculated by iteratively computing Ø, m(Ø), m²(Ø),... until mⁱ(Ø) = mⁱ⁺¹(Ø). The least fixpoint is mⁱ(Ø);
- the greatest fixpoint of *m* exists, is unique, and can be calculated by iteratively computing S, m(S), m²(S), ... until mⁱ(S) = mⁱ⁺¹(S). The greatest fixpoint is mⁱ(S).

Applications

 Fixpoint theory allows to easily derive algorithms for other temporal operators.

$$E_0 \models \phi \text{ EU } \psi$$
 iff for some run $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$,
for some $i \ge 0$, $E_i \models \psi$, and
for all $j < i$, $E_i \models \phi$

Applications

 Fixpoint theory allows to easily derive algorithms for other temporal operators.

$$E_0 \models \phi \text{ EU } \psi \text{ iff for some run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$$
,
for some $i \ge 0$, $E_i \models \psi$, and
for all $j < i$, $E_j \models \phi$

► Equivalence: ϕ EU $\psi \equiv \psi \lor (\phi \land \langle - \rangle \phi$ EU $\psi)$

Applications

 Fixpoint theory allows to easily derive algorithms for other temporal operators.

$$E_0 \models \phi \text{ EU } \psi$$
 iff for some run $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots$,
for some $i \ge 0$, $E_i \models \psi$, and
for all $j < i$, $E_j \models \phi$

- ► Equivalence: ϕ EU $\psi \equiv \psi \lor (\phi \land \langle \rangle \phi$ EU $\psi)$
- ► So: $\llbracket \phi \text{ EU } \psi \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre(\llbracket \phi \text{ EU } \psi \rrbracket))$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Applications

 Fixpoint theory allows to easily derive algorithms for other temporal operators.

$$\begin{split} E_0 \models \phi \; \text{EU} \; \psi \quad \text{iff} \quad \text{for some run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots, \\ \text{for some } i \geq 0, \; E_i \models \psi, \; \text{and} \\ \text{for all } j < i, \; E_j \models \phi \end{split}$$

- ► Equivalence: ϕ EU $\psi \equiv \psi \lor (\phi \land \langle \rangle \phi$ EU $\psi)$
- ► So: $\llbracket \phi \text{ EU } \psi \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre(\llbracket \phi \text{ EU } \psi \rrbracket))$
- \blacktriangleright $[\![\phi \mbox{ EU }\psi]\!]$ is solution of the equation

The logic of the Workbench

$$X = \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre(X)) \stackrel{\text{def}}{=} eu(X)$$

Applications

 Fixpoint theory allows to easily derive algorithms for other temporal operators.

$$E_0 \models \phi \text{ EU } \psi \text{ iff for some run } E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \cdots,$$

for some $i \ge 0$, $E_i \models \psi$, and
for all $j < i$, $E_j \models \phi$

- ► Equivalence: ϕ EU $\psi \equiv \psi \lor (\phi \land \langle \rangle \phi$ EU $\psi)$
- ► So: $\llbracket \phi \text{ EU } \psi \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre(\llbracket \phi \text{ EU } \psi \rrbracket))$
- \blacktriangleright $[\![\phi \mbox{ EU }\psi]\!]$ is solution of the equation

 $X = \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre(X)) \stackrel{\text{def}}{=} eu(X)$

It is the smallest solution, and so, since *eu* is monotonic, we can compute [[\$\phi\$ EU \$\psi\$]] as the stabilizing point of Ø, *eu*(Ø), *eu*²(Ø),

・ 日・ ・ 聞・ ・ 思・ ・ 思・ ・ のへぐ

The logic of the Workbench

In order to encode CTL⁻ in the Workbench's logic, we write prop AG(P) = max(Z.P & [-]Z); prop EF(P) = min(X.P | <->X); prop AF(P) = min(X.P | (<->T & [-]X)); prop EG(P) = max(X.P &([-]F | <->X));

- In order to encode CTL⁻ in the Workbench's logic, we write prop AG(P) = max(Z.P & [-]Z); prop EF(P) = min(X.P | <->X);
 - prop AF(P) = min(X.P | (<->T & [-]X));
 - prop EG(P) = max(X.P &([-]F | <->X));
- These definitions correspond to recursive equations.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The logic of the Workbench

- In order to encode CTL⁻ in the Workbench's logic, we write prop AG(P) = max(Z.P & [-]Z); prop EF(P) = min(X.P | <->X); prop AF(P) = min(X.P | (<->T & [-]X)); prop EG(P) = max(X.P &([-]F | <->X));
- ► These definitions correspond to recursive equations.
- E.g., the definition of EF φ states that [[EF φ]] is the smallest solution (min) of the equation

$$X = \llbracket \phi \rrbracket \lor pre(X)$$

The logic of the Workbench

- In order to encode CTL⁻ in the Workbench's logic, we write prop AG(P) = max(Z.P & [-]Z); prop EF(P) = min(X.P | <->X); prop AF(P) = min(X.P | (<->T & [-]X)); prop EG(P) = max(X.P &([-]F | <->X));
- ▶ These definitions correspond to recursive equations.
- E.g., the definition of EF φ states that [[EF φ]] is the smallest solution (min) of the equation

$$X = \llbracket \phi \rrbracket \lor pre(X)$$

In other words, in the Workbench a property is defined through a (possibly recursive) equation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼ ● ●