Labelled transition systems

> A labelled transition system on a set of actions A is a pair
Communication and Concurrency T =(S,9), where

Lecture 15

Colin Stirling (cps)
School of Informatics

11th November 2013

Labelled transition systems Labelled transition systems
» A labelled transition system on a set of actions A is a pair > A labelled transition system on a set of actions A is a pair
T =(S,9), where T =(S,9), where
» S is a set of states, > S is a set of states,
» 5 C S x A xS is the transition relation > § C S x A xS is the transition relation

> Restrict to finite transition systems: where A and S (and 9)
are finite

Labelled transition systems Labelled transition systems

» A labelled transition system on a set of actions A is a pair > A labelled transition system on a set of actions A is a pair
T =(S,9), where T =(S,9), where

» S is a set of states, > S is a set of states,

» 5 C S x A xS is the transition relation » § C S x AxS is the transition relation

» Restrict to finite transition systems: where A and S (and §) > Restrict to finite transition systems: where A and S (and)
are finite are finite

» For process E, we denote by Tg = (Sg, dg) the labelled » For process E, we denote by Tg = (Sg, dg) the labelled
transition system associated to E, inductively defined as transition system associated to E, inductively defined as
follows: follows:

1. E € Sg, and
Labelled transition systems Model checking CTL™

» A labelled transition system on a set of actions A is a pair]
T = (S, 5), where » Given: a process E, a formula ¢ of CTL™.

» S is a set of states,

» 5 C S x A xS is the transition relation

» Restrict to finite transition systems: where A and S (and 0)
are finite

» For process E, we denote by Tg = (Sg, dg) the labelled
transition system associated to E, inductively defined as
follows:

1. Ee SE, and

2. if Fe Sg, and F 25 G, then G € S¢ and (F, a, G) € 6.

Model checking CTL™ Model checking CTL™

» Given: a process E, a formula ¢ of CTL™. » Given: a process E, a formula ¢ of CTL™.
» Decide: does E satisfies ¢ ? » Decide: does E satisfies ¢ 7

» For convenience we add negation to CTL™

Model checking CTL™ Model checking CTL™

» Given: a process E, a formula ¢ of CTL™.

» Decide: does E satisfies ¢ ?

» For convenience we add negation to CTL™

» For formula v, [¢] is the set of states of Tg satisfying).

Given: a process E, a formula ¢ of CTL™.
Decide: does E satisfies ¢ 7
For convenience we add negation to CTL™

For formula 9, [¢/] is the set of states of Tg satisfying .
Sketch of the algorithm:

vV vy VvV VY

Model checking CTL™ Model checking CTL™

Given: a process E, a formula ¢ of CTL™.
Decide: does E satisfies ¢ 7

For convenience we add negation to CTL™

For formula 1, [¢] is the set of states of Tg satisfying . For formula ¢, [1] is the set of states of Tg satisfying .
Sketch of the algorithm: Sketch of the algorithm:

1. Compute the subformulas of ¢ 1. Compute the subformulas of ¢
2. Compute [[¢] for each subformula v of ¢, starting with the
smallest subformulas and then with larger and larger
subformulas

Given: a process E, a formula ¢ of CTL™.
Decide: does E satisfies ¢ 7

For convenience we add negation to CTL™

vV vy VvV VyYy
vV vy VvV VY

Model checking CTL™ Computin . the easy cases
g P g y
» Because of the equivalences
Kl = ~(K)=¢
» Given: a process E, a formula ¢ of CTL™. AG+ = —EF ~
» Decide: does E satisfies ¢ ? AFY = —EG %)
» For convenience we add negation to CTL™ we can assume that ¢ does not contain [K], AG or AF
» For formula v, [¢] is the set of states of Tg satisfying). operators
» Sketch of the algorithm: [tt] = Se
1. Compute the subformulas of ¢ [££] = 0
2. Compute [[¢)] for each subformula v of ¢, starting with the A _ A
smallest subformulas and then with larger and larger [01 A 4h2] [¥1] N [¥-]
subformulas [[wl \% @DZ]] = M)l]] U M)Z]]
3. Answer: “E satisfies ¢" iff E € [¢] [-v] = Se\I[¥l

[(K)val = prex([ynl)

Computing [¢/]: the easy cases
» Because of the equivalences

Kl =

AGY =

AF ¢ =

—(K)—
—EF —)
—EG —)

we can assume that ¢ does not contain [K], AG or AF

operators

[tt] =

[££]

[wo1 A o]
[11 V o]
[-v] =
[(K)1] =

» pre([11]) 4 states from which some state in [1] can be

Se

0

[v1] N [¥2]
[v1] U [¥2]
Se\ [¥]
prex ([¥1])

reached through some action in K.

Computing [EF 1]

Let pre() denote pre,()

Input: Tg, [¢1]
Output [EF ¢1]

return C

Initialize C := [y1];

Iterate C := C U pre(C)
until a fixpoint is reached;

Complexity: O(|Sgl| - (|Se| + |0g])

Better algorithm: explore each state only once using depth-first or

breadth-first search. (Complexity: O(|Sg| + |dg|))

Computing [¢/]: the easy cases

» Because of the equivalences

[Klp = =(K)~¢

AGYy = —EF
AF¢p = —EG —
we can assume that ¢ does not contain [K], AG or AF
operators
[tt] = Se
[££] = 0
[Aol = [va] N [¥2]
[Vo] = [a] U [¥2]

-] = Se\l[¥]
[(K)i] = prex([va])

> pre([41]) 1 states from which some state in [11] can be
reached through some action in K.
» Complexity: O(|Sg| + |0g])

Computing [EG /1]

Input: Tg, [¢1]
Output: [EG ¢1]
Compute D := states of Sg without successors;
Initialize C := Sg;
Iterate C := [[v»1] N (pre(C) U D)
until a fixpoint is reached;

return C

Complexity: O(|Se| - (|Se| + |9e|)

Computing [EG 1] Il

An algorithm with O(|Sg| + |dg|) complexity:
» Compute D’ := states of Sg without successors in 1]

» Compute the labelled transition system
Te = ([¥a], 6 0 ([oa] x A x [¥a])

» Compute the set of states C that belong to some strongly
connected component of Tg.

» Using the algorithm for [EF 1] case, compute the states
from which some state in C U D’ can be reached (using
transitions of T only).

Complexity of the complete model-checking algorithm

» A formula ¢ has at most |¢| subformulas (where |¢| is the
length of ¢).

» So the algorithms for the easy cases, for EF v, and for EG 1)
have to be executed altogether at most |¢| times

Complexity of the complete model-checking algorithm

» A formula ¢ has at most |¢| subformulas (where || is the
length of ¢).

Complexity of the complete model-checking algorithm

» A formula ¢ has at most |¢| subformulas (where |¢| is the
length of ¢).

» So the algorithms for the easy cases, for EF ¢, and for EG v
have to be executed altogether at most |¢| times

» Each execution of one of the algorithms takes at most
O(|Se| + |9g|) time (using the fast algorithms).

Complexity of the complete model-checking algorithm Fixpoint view of the algorithms
» The following equivalences hold:

» A formula ¢ has at most |¢| subformulas (where |¢]| is the EF ¢ = ¢V(-)EF¢
length of ¢). EGo = ¢A((-)EGoV[-]ff)

» So the algorithms for the easy cases, for EF v, and for EG 1)
have to be executed altogether at most |¢| times

» Each execution of one of the algorithms takes at most
O(|Se| + |9g|) time (using the fast algorithms).

» So the overall complexity is

O(l¢] - (15l + 16e1))

Fixpoint view of the algorithms Fixpoint view of the algorithms

» The following equivalences hold:
EF¢ = ¢V (—)EF ¢
EGp = o A((—)EGoV[-]ff)

» So we have

[EF ¢] = [l U pre([EF ¢])
[EG ¢] = [¢l N (pre([EG o) U [[-]££])

» The following equivalences hold:

EF¢ = ¢V (—)EF ¢
EGo = ¢A((-)EGV[-]Ef)

» So we have

[EF ¢] =[] U pre([EF ¢])
[EG ¢] = [ol N (pre([EG ¢]) U [[-]££])

» and so [EF ¢] and [EG ¢] are solutions of the equations

X = [#]U pre(X) ©ef (X)
X = [N (pre(X)U[[-]££] = eg(X)

Fixpoint view of the algorithms

» The following equivalences hold:

EF¢ = ¢V (—)EF ¢
EGop = o A((—)EGoV[-]|ff)

» So we have

[EF o] = [¢]U pre([EF ¢])
[EG o] = [¢] N (pre([EG ¢]) U [[-]££])

» and so [[EF ¢] and [EG ¢] are solutions of the equations

def

X = [elu pre(X) by ef (X)

X = [oln(pre(X) U[-]£5] = eg(X)

» These solutions are fixpoints of the mappings ef and eg.

Which solutions?
Proposition: [EF ¢] is the smallest solution (least fixpoint) of
X = ef(X).
Proof: Notice that [EF ¢] = ;> pre'([¢]), where

def
pre([#]) = [4]-
Let Xo be an arbitrary solution.
We prove pre/([¢]) € Xo for every i > 0 by induction on i.

Which solutions?

Proposition: [EF ¢] is the smallest solution (least fixpoint) of
X = ef(X).

Which solutions?

Proposition: [EF ¢] is the smallest solution (least fixpoint) of
X = ef (X).

Proof: Notice that [EF ¢] = U;> pre'([¢]), where

def
pre®([9]) = [#]-
Let Xo be an arbitrary solution.
We prove pre/([¢]) C Xo for every i > 0 by induction on i.
Base: i = 0. Obvious from Xy = [¢] U “something”.

Step: Assume pre/([¢]) € Xo. Then:

pre X ([0])
= pre(pre’'([¢])) (definition of pre)
C pre(Xo) (induction hypothesis)
C

Xo (Xo = pre(Xo) U “something”)

Which solutions? Fixpoint algorithms

Proposition: [EF ¢] is the smallest solution (least fixpoint) of
X = ef(X).

Proof: Notice that [EF ¢] = ;5 pre'([¢]), where
pre’([6]) = [4]

Let Xo be an arbitrary solution.

We prove pre/([¢]) € Xo for every i > 0 by induction on i.
Base: i = 0. Obvious from Xy = [¢] U “something”.

Step: Assume pre'([¢]) € Xo. Then:

» The mappings ef (X) and eg(X) are monotonic, i.e.,
if X CY, then ef(X) C ef(Y) and eg(X) C eg(Y)

pre"([9])
= pre(pre'([¢])) (definition of pre)
C pre(Xo) (induction hypothesis)
C Xo (Xo = pre(Xp) U “something”)

Proposition: [EG ¢] is the largest solution (greatest fixpoint) of
X = eg(X).
Proof: Exercise

Fixpoint algorithms Fixpoint algorithms
» The mappings ef (X) and eg(X) are monotonic, i.e., » The mappings ef (X) and eg(X) are monotonic, i.e.,
if X C Y, then ef(X) C ef(Y) and eg(X) C eg(Y) if X CY, then ef(X) C ef(Y) and eg(X) C eg(Y)
» Given a finite set S and a monotonic mapping m: 2° — 2°, > Given a finite set S and a monotonic mapping m: 2° — 23,

» the least fixpoint of m exists, is unique, and can be calculated
by iteratively computing (), m(), m?(®), ... until
m'(0)) = m*1(0). The least fixpoint is m'(f);

Fixpoint algorithms Applications

» Fixpoint theory allows to easily derive algorithms for other
temporal operators.

» The mappings ef (X) and eg(X) are monotonic, i.e., . ar a
, E EU iff for some run Eg — E; — - - -,
if X C Y, then ef (X) C ef(Y) and eg(X) C eg(Y) 0 FEUY o come > OOE- |:1; o

» Given a finite set S and a monotonic mapping m: 2° — 23, forall j < i, E = ¢
» the least fixpoint of m exists, is unique, and can be calculated

by iteratively computing (), m(0), m?(0), ... until

m'(()) = m™1(D). The least fixpoint is m'();
» the greatest fixpoint of m exists, is unique, and can be

calculated by iteratively computing S, m(S), m?(S), ... until
m'(S) = m'T1(S). The greatest fixpoint is m'(S).

Applications Applications
» Fixpoint theory allows to easily derive algorithms for other » Fixpoint theory allows to easily derive algorithms for other
temporal operators. temporal operators.

Eo = ¢ EU iff for some run Egy L E 2, Eo = ¢ EU iff for some run Ey LR 2
for some i > 0, E; =, and for some i > 0, E; =1, and
forall j < i, E = ¢ forall j < i, E = ¢

» Equivalence: ¢ EU¢Y = ¢V (¢ A (—)¢p EU) » Equivalence: pEUY = ¥V (¢ A (=)@ EU¥)

> So: [p EU] = [¢]U([¢] N pre([o EV ¥]))

Applications

» Fixpoint theory allows to easily derive algorithms for other
temporal operators.

Eo = ¢ EU) iff for some run By = Ep 2 ...,
for some i > 0, E; =, and
forall j < i, Ej = ¢

» Equivalence: ¢EUY = ¢V (¢ A (—)¢ EU W)
> So: [EUy] = [¥] U ([o] N pre([o EV ¢]))
» [¢ EU 9] is solution of the equation

X = WIuelnpre(X)) ¥ eu(x)

The logic of the Workbench

» In order to encode CTL™ in the Workbench's logic, we write

prop AG(P) = max(Z.P & [-]12);
prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]1X));
prop EG(P) = max(X.P &([-]F | <->X));

Applications

» Fixpoint theory allows to easily derive algorithms for other
temporal operators.

Eo = ¢ EU® iff for some run By == E; 2 ...,
for some i > 0, E; =1, and
forall j < i, Ej = ¢

» Equivalence: ¢ EUY = ¥V (P A (—)p EU)
> So: [p EU Y] = [¢]U([¢] N pre([o EU ¢]))
» [¢ EU 9] is solution of the equation

def
X = Iu([elnpre(X)) = eu(X)
» |t is the smallest solution, and so, since eu is monotonic, we

can compute [¢ EU 9] as the stabilizing point of
0, eu(), eu?(0),. . ..

The logic of the Workbench

» In order to encode CTL™ in the Workbench's logic, we write
prop AG(P) = max(Z.P & [-]12);

prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]1X));
prop EG(P) = max(X.P &([-1F | <->X));

» These definitions correspond to recursive equations.

The logic of the Workbench The logic of the Workbench

» In order to encode CTL™ in the Workbench's logic, we write » In order to encode CTL™ in the Workbench's logic, we write
prop AG(P) = max(Z.P & [-]1Z); prop AG(P) = max(Z.P & [-12);
prop EF(P) = min(X.P | <->X); prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]1X)); prop AF(P) = min(X.P | (<->T & [-]1X));
prop EG(P) = max(X.P &([-]F | <->X)); prop EG(P) = max(X.P &([-]F | <->X));
» These definitions correspond to recursive equations. » These definitions correspond to recursive equations.
» E.g., the definition of EF ¢ states that [EF ¢] is the smallest » E.g., the definition of EF ¢ states that [EF ¢] is the smallest
solution (min) of the equation solution (min) of the equation
X = [¢] v pre(X) X = [¢] v pre(X)

» In other words, in the Workbench a property is defined
through a (possibly recursive) equation.

