
Communication and Concurrency
Lecture 15

Colin Stirling (cps)

School of Informatics

11th November 2013

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and
2. if F ∈ SE , and F

a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and
2. if F ∈ SE , and F

a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and
2. if F ∈ SE , and F

a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and
2. if F ∈ SE , and F

a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and

2. if F ∈ SE , and F
a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Labelled transition systems

I A labelled transition system on a set of actions A is a pair
T = (S , δ), where

I S is a set of states,

I δ ⊆ S × A× S is the transition relation

I Restrict to finite transition systems: where A and S (and δ)
are finite

I For process E , we denote by TE = (SE , δE) the labelled
transition system associated to E , inductively defined as
follows:

1. E ∈ SE , and
2. if F ∈ SE , and F

a−→ G , then G ∈ SE and (F , a,G) ∈ δE .

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.

I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ

2. Compute [[ψ]] for each subformula ψ of φ, starting with the
smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Model checking CTL−

I Given: a process E , a formula φ of CTL−.

I Decide: does E satisfies φ ?

I For convenience we add negation to CTL−

I For formula ψ, [[ψ]] is the set of states of TE satisfying ψ.
I Sketch of the algorithm:

1. Compute the subformulas of φ
2. Compute [[ψ]] for each subformula ψ of φ, starting with the

smallest subformulas and then with larger and larger
subformulas

3. Answer: “E satisfies φ” iff E ∈ [[φ]]

Computing [[ψ]]: the easy cases
I Because of the equivalences

[K]ψ ≡ ¬〈K 〉¬ψ
AG ψ ≡ ¬EF ¬ψ
AF ψ ≡ ¬EG ¬ψ

we can assume that φ does not contain [K], AG or AF
operators

[[tt]] = SE

[[ff]] = ∅
[[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]
[[ψ1 ∨ ψ2]] = [[ψ1]] ∪ [[ψ2]]

[[¬ψ]] = SE \ [[ψ]]
[[〈K 〉ψ1]] = preK ([[ψ1]])

I preK ([[ψ1]])
def
= states from which some state in [[ψ1]] can be

reached through some action in K .
I Complexity: O(|SE |+ |δE |)

Computing [[ψ]]: the easy cases
I Because of the equivalences

[K]ψ ≡ ¬〈K 〉¬ψ
AG ψ ≡ ¬EF ¬ψ
AF ψ ≡ ¬EG ¬ψ

we can assume that φ does not contain [K], AG or AF
operators

[[tt]] = SE

[[ff]] = ∅
[[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]
[[ψ1 ∨ ψ2]] = [[ψ1]] ∪ [[ψ2]]

[[¬ψ]] = SE \ [[ψ]]
[[〈K 〉ψ1]] = preK ([[ψ1]])

I preK ([[ψ1]])
def
= states from which some state in [[ψ1]] can be

reached through some action in K .

I Complexity: O(|SE |+ |δE |)

Computing [[ψ]]: the easy cases
I Because of the equivalences

[K]ψ ≡ ¬〈K 〉¬ψ
AG ψ ≡ ¬EF ¬ψ
AF ψ ≡ ¬EG ¬ψ

we can assume that φ does not contain [K], AG or AF
operators

[[tt]] = SE

[[ff]] = ∅
[[ψ1 ∧ ψ2]] = [[ψ1]] ∩ [[ψ2]]
[[ψ1 ∨ ψ2]] = [[ψ1]] ∪ [[ψ2]]

[[¬ψ]] = SE \ [[ψ]]
[[〈K 〉ψ1]] = preK ([[ψ1]])

I preK ([[ψ1]])
def
= states from which some state in [[ψ1]] can be

reached through some action in K .
I Complexity: O(|SE |+ |δE |)

Computing [[EF ψ1]]

Let pre() denote preA()

Input: TE , [[ψ1]]
Output [[EF ψ1]]

Initialize C := [[ψ1]];

Iterate C := C ∪ pre(C)
until a fixpoint is reached;

return C

Complexity: O(|SE | · (|SE |+ |δE |)

Better algorithm: explore each state only once using depth-first or
breadth-first search. (Complexity: O(|SE |+ |δE |))

Computing [[EG ψ1]]

Input: TE , [[ψ1]]
Output: [[EG ψ1]]

Compute D := states of SE without successors;

Initialize C := SE ;

Iterate C := [[ψ1]] ∩ (pre(C) ∪ D)

until a fixpoint is reached;

return C

Complexity: O(|SE | · (|SE |+ |δE |)

Computing [[EG ψ1]] II

An algorithm with O(|SE |+ |δE |) complexity:

I Compute D ′ := states of SE without successors in [[ψ1]]

I Compute the labelled transition system
T ′E = ([[ψ1]], δE ∩ ([[ψ1]]× A× [[ψ1]])

I Compute the set of states C that belong to some strongly
connected component of T ′E .

I Using the algorithm for [[EF ψ1]] case, compute the states
from which some state in C ∪ D ′ can be reached (using
transitions of T ′E only).

Complexity of the complete model-checking algorithm

I A formula φ has at most |φ| subformulas (where |φ| is the
length of φ).

I So the algorithms for the easy cases, for EF ψ, and for EG ψ
have to be executed altogether at most |φ| times

I Each execution of one of the algorithms takes at most
O(|SE |+ |δE |) time (using the fast algorithms).

I So the overall complexity is

O(|φ| · (|SE |+ |δE |))

Complexity of the complete model-checking algorithm

I A formula φ has at most |φ| subformulas (where |φ| is the
length of φ).

I So the algorithms for the easy cases, for EF ψ, and for EG ψ
have to be executed altogether at most |φ| times

I Each execution of one of the algorithms takes at most
O(|SE |+ |δE |) time (using the fast algorithms).

I So the overall complexity is

O(|φ| · (|SE |+ |δE |))

Complexity of the complete model-checking algorithm

I A formula φ has at most |φ| subformulas (where |φ| is the
length of φ).

I So the algorithms for the easy cases, for EF ψ, and for EG ψ
have to be executed altogether at most |φ| times

I Each execution of one of the algorithms takes at most
O(|SE |+ |δE |) time (using the fast algorithms).

I So the overall complexity is

O(|φ| · (|SE |+ |δE |))

Complexity of the complete model-checking algorithm

I A formula φ has at most |φ| subformulas (where |φ| is the
length of φ).

I So the algorithms for the easy cases, for EF ψ, and for EG ψ
have to be executed altogether at most |φ| times

I Each execution of one of the algorithms takes at most
O(|SE |+ |δE |) time (using the fast algorithms).

I So the overall complexity is

O(|φ| · (|SE |+ |δE |))

Fixpoint view of the algorithms

I The following equivalences hold:

EF φ ≡ φ ∨ 〈−〉EF φ
EG φ ≡ φ ∧ (〈−〉EG φ ∨ [−]ff)

I So we have

[[EF φ]] = [[φ]] ∪ pre([[EF φ]])

[[EG φ]] = [[φ]] ∩ (pre([[EG φ]]) ∪ [[[−]ff]])

I and so [[EF φ]] and [[EG φ]] are solutions of the equations

X = [[φ]] ∪ pre(X)
def
= ef (X)

X = [[φ]] ∩ (pre(X) ∪ [[[−]ff]]
def
= eg(X)

I These solutions are fixpoints of the mappings ef and eg .

Fixpoint view of the algorithms

I The following equivalences hold:

EF φ ≡ φ ∨ 〈−〉EF φ
EG φ ≡ φ ∧ (〈−〉EG φ ∨ [−]ff)

I So we have

[[EF φ]] = [[φ]] ∪ pre([[EF φ]])

[[EG φ]] = [[φ]] ∩ (pre([[EG φ]]) ∪ [[[−]ff]])

I and so [[EF φ]] and [[EG φ]] are solutions of the equations

X = [[φ]] ∪ pre(X)
def
= ef (X)

X = [[φ]] ∩ (pre(X) ∪ [[[−]ff]]
def
= eg(X)

I These solutions are fixpoints of the mappings ef and eg .

Fixpoint view of the algorithms

I The following equivalences hold:

EF φ ≡ φ ∨ 〈−〉EF φ
EG φ ≡ φ ∧ (〈−〉EG φ ∨ [−]ff)

I So we have

[[EF φ]] = [[φ]] ∪ pre([[EF φ]])

[[EG φ]] = [[φ]] ∩ (pre([[EG φ]]) ∪ [[[−]ff]])

I and so [[EF φ]] and [[EG φ]] are solutions of the equations

X = [[φ]] ∪ pre(X)
def
= ef (X)

X = [[φ]] ∩ (pre(X) ∪ [[[−]ff]]
def
= eg(X)

I These solutions are fixpoints of the mappings ef and eg .

Fixpoint view of the algorithms

I The following equivalences hold:

EF φ ≡ φ ∨ 〈−〉EF φ
EG φ ≡ φ ∧ (〈−〉EG φ ∨ [−]ff)

I So we have

[[EF φ]] = [[φ]] ∪ pre([[EF φ]])

[[EG φ]] = [[φ]] ∩ (pre([[EG φ]]) ∪ [[[−]ff]])

I and so [[EF φ]] and [[EG φ]] are solutions of the equations

X = [[φ]] ∪ pre(X)
def
= ef (X)

X = [[φ]] ∩ (pre(X) ∪ [[[−]ff]]
def
= eg(X)

I These solutions are fixpoints of the mappings ef and eg .

Which solutions?
Proposition: [[EF φ]] is the smallest solution (least fixpoint) of
X = ef (X).

Proof: Notice that [[EF φ]] =
⋃

i≥0 pre i ([[φ]]), where

pre0([[φ]])
def
= [[φ]].

Let X0 be an arbitrary solution.
We prove pre i ([[φ]]) ⊆ X0 for every i ≥ 0 by induction on i .
Base: i = 0. Obvious from X0 = [[φ]] ∪ “something”.
Step: Assume pre i ([[φ]]) ⊆ X0. Then:

pre i+1([[φ]])
= pre(pre i ([[φ]])) (definition of pre)
⊆ pre(X0) (induction hypothesis)
⊆ X0 (X0 = pre(X0) ∪ “something”)

Proposition: [[EG φ]] is the largest solution (greatest fixpoint) of
X = eg(X).
Proof: Exercise

Which solutions?
Proposition: [[EF φ]] is the smallest solution (least fixpoint) of
X = ef (X).

Proof: Notice that [[EF φ]] =
⋃

i≥0 pre i ([[φ]]), where

pre0([[φ]])
def
= [[φ]].

Let X0 be an arbitrary solution.
We prove pre i ([[φ]]) ⊆ X0 for every i ≥ 0 by induction on i .

Base: i = 0. Obvious from X0 = [[φ]] ∪ “something”.
Step: Assume pre i ([[φ]]) ⊆ X0. Then:

pre i+1([[φ]])
= pre(pre i ([[φ]])) (definition of pre)
⊆ pre(X0) (induction hypothesis)
⊆ X0 (X0 = pre(X0) ∪ “something”)

Proposition: [[EG φ]] is the largest solution (greatest fixpoint) of
X = eg(X).
Proof: Exercise

Which solutions?
Proposition: [[EF φ]] is the smallest solution (least fixpoint) of
X = ef (X).

Proof: Notice that [[EF φ]] =
⋃

i≥0 pre i ([[φ]]), where

pre0([[φ]])
def
= [[φ]].

Let X0 be an arbitrary solution.
We prove pre i ([[φ]]) ⊆ X0 for every i ≥ 0 by induction on i .
Base: i = 0. Obvious from X0 = [[φ]] ∪ “something”.
Step: Assume pre i ([[φ]]) ⊆ X0. Then:

pre i+1([[φ]])
= pre(pre i ([[φ]])) (definition of pre)
⊆ pre(X0) (induction hypothesis)
⊆ X0 (X0 = pre(X0) ∪ “something”)

Proposition: [[EG φ]] is the largest solution (greatest fixpoint) of
X = eg(X).
Proof: Exercise

Which solutions?
Proposition: [[EF φ]] is the smallest solution (least fixpoint) of
X = ef (X).

Proof: Notice that [[EF φ]] =
⋃

i≥0 pre i ([[φ]]), where

pre0([[φ]])
def
= [[φ]].

Let X0 be an arbitrary solution.
We prove pre i ([[φ]]) ⊆ X0 for every i ≥ 0 by induction on i .
Base: i = 0. Obvious from X0 = [[φ]] ∪ “something”.
Step: Assume pre i ([[φ]]) ⊆ X0. Then:

pre i+1([[φ]])
= pre(pre i ([[φ]])) (definition of pre)
⊆ pre(X0) (induction hypothesis)
⊆ X0 (X0 = pre(X0) ∪ “something”)

Proposition: [[EG φ]] is the largest solution (greatest fixpoint) of
X = eg(X).
Proof: Exercise

Fixpoint algorithms

I The mappings ef (X) and eg(X) are monotonic, i.e.,
if X ⊆ Y , then ef (X) ⊆ ef (Y) and eg(X) ⊆ eg(Y)

I Given a finite set S and a monotonic mapping m : 2S → 2S ,

I the least fixpoint of m exists, is unique, and can be calculated
by iteratively computing ∅,m(∅),m2(∅), . . . until
mi (∅) = mi+1(∅). The least fixpoint is mi (∅);

I the greatest fixpoint of m exists, is unique, and can be
calculated by iteratively computing S ,m(S),m2(S), . . . until
mi (S) = mi+1(S). The greatest fixpoint is mi (S).

Fixpoint algorithms

I The mappings ef (X) and eg(X) are monotonic, i.e.,
if X ⊆ Y , then ef (X) ⊆ ef (Y) and eg(X) ⊆ eg(Y)

I Given a finite set S and a monotonic mapping m : 2S → 2S ,

I the least fixpoint of m exists, is unique, and can be calculated
by iteratively computing ∅,m(∅),m2(∅), . . . until
mi (∅) = mi+1(∅). The least fixpoint is mi (∅);

I the greatest fixpoint of m exists, is unique, and can be
calculated by iteratively computing S ,m(S),m2(S), . . . until
mi (S) = mi+1(S). The greatest fixpoint is mi (S).

Fixpoint algorithms

I The mappings ef (X) and eg(X) are monotonic, i.e.,
if X ⊆ Y , then ef (X) ⊆ ef (Y) and eg(X) ⊆ eg(Y)

I Given a finite set S and a monotonic mapping m : 2S → 2S ,

I the least fixpoint of m exists, is unique, and can be calculated
by iteratively computing ∅,m(∅),m2(∅), . . . until
mi (∅) = mi+1(∅). The least fixpoint is mi (∅);

I the greatest fixpoint of m exists, is unique, and can be
calculated by iteratively computing S ,m(S),m2(S), . . . until
mi (S) = mi+1(S). The greatest fixpoint is mi (S).

Fixpoint algorithms

I The mappings ef (X) and eg(X) are monotonic, i.e.,
if X ⊆ Y , then ef (X) ⊆ ef (Y) and eg(X) ⊆ eg(Y)

I Given a finite set S and a monotonic mapping m : 2S → 2S ,

I the least fixpoint of m exists, is unique, and can be calculated
by iteratively computing ∅,m(∅),m2(∅), . . . until
mi (∅) = mi+1(∅). The least fixpoint is mi (∅);

I the greatest fixpoint of m exists, is unique, and can be
calculated by iteratively computing S ,m(S),m2(S), . . . until
mi (S) = mi+1(S). The greatest fixpoint is mi (S).

Applications

I Fixpoint theory allows to easily derive algorithms for other
temporal operators.

E0 |= φ EU ψ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= ψ, and
for all j < i , Ej |= φ

I Equivalence: φ EU ψ ≡ ψ ∨ (φ ∧ 〈−〉φ EU ψ)

I So: [[φ EU ψ]] = [[ψ]] ∪ ([[φ]] ∩ pre([[φ EU ψ]]))

I [[φ EU ψ]] is solution of the equation

X = [[ψ]] ∪ ([[φ]] ∩ pre(X))
def
= eu(X)

I It is the smallest solution, and so, since eu is monotonic, we
can compute [[φ EU ψ]] as the stabilizing point of
∅, eu(∅), eu2 (∅),

Applications

I Fixpoint theory allows to easily derive algorithms for other
temporal operators.

E0 |= φ EU ψ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= ψ, and
for all j < i , Ej |= φ

I Equivalence: φ EU ψ ≡ ψ ∨ (φ ∧ 〈−〉φ EU ψ)

I So: [[φ EU ψ]] = [[ψ]] ∪ ([[φ]] ∩ pre([[φ EU ψ]]))

I [[φ EU ψ]] is solution of the equation

X = [[ψ]] ∪ ([[φ]] ∩ pre(X))
def
= eu(X)

I It is the smallest solution, and so, since eu is monotonic, we
can compute [[φ EU ψ]] as the stabilizing point of
∅, eu(∅), eu2 (∅),

Applications

I Fixpoint theory allows to easily derive algorithms for other
temporal operators.

E0 |= φ EU ψ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= ψ, and
for all j < i , Ej |= φ

I Equivalence: φ EU ψ ≡ ψ ∨ (φ ∧ 〈−〉φ EU ψ)

I So: [[φ EU ψ]] = [[ψ]] ∪ ([[φ]] ∩ pre([[φ EU ψ]]))

I [[φ EU ψ]] is solution of the equation

X = [[ψ]] ∪ ([[φ]] ∩ pre(X))
def
= eu(X)

I It is the smallest solution, and so, since eu is monotonic, we
can compute [[φ EU ψ]] as the stabilizing point of
∅, eu(∅), eu2 (∅),

Applications

I Fixpoint theory allows to easily derive algorithms for other
temporal operators.

E0 |= φ EU ψ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= ψ, and
for all j < i , Ej |= φ

I Equivalence: φ EU ψ ≡ ψ ∨ (φ ∧ 〈−〉φ EU ψ)

I So: [[φ EU ψ]] = [[ψ]] ∪ ([[φ]] ∩ pre([[φ EU ψ]]))

I [[φ EU ψ]] is solution of the equation

X = [[ψ]] ∪ ([[φ]] ∩ pre(X))
def
= eu(X)

I It is the smallest solution, and so, since eu is monotonic, we
can compute [[φ EU ψ]] as the stabilizing point of
∅, eu(∅), eu2 (∅),

Applications

I Fixpoint theory allows to easily derive algorithms for other
temporal operators.

E0 |= φ EU ψ iff for some run E0
a1−→ E1

a2−→ · · · ,
for some i ≥ 0, Ei |= ψ, and
for all j < i , Ej |= φ

I Equivalence: φ EU ψ ≡ ψ ∨ (φ ∧ 〈−〉φ EU ψ)

I So: [[φ EU ψ]] = [[ψ]] ∪ ([[φ]] ∩ pre([[φ EU ψ]]))

I [[φ EU ψ]] is solution of the equation

X = [[ψ]] ∪ ([[φ]] ∩ pre(X))
def
= eu(X)

I It is the smallest solution, and so, since eu is monotonic, we
can compute [[φ EU ψ]] as the stabilizing point of
∅, eu(∅), eu2 (∅),

The logic of the Workbench

I In order to encode CTL− in the Workbench’s logic, we write
prop AG(P) = max(Z.P & [-]Z);
prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]X));
prop EG(P) = max(X.P &([-]F | <->X));

I These definitions correspond to recursive equations.

I E.g., the definition of EF φ states that [[EF φ]] is the smallest
solution (min) of the equation

X = [[φ]] ∨ pre(X)

I In other words, in the Workbench a property is defined
through a (possibly recursive) equation.

The logic of the Workbench

I In order to encode CTL− in the Workbench’s logic, we write
prop AG(P) = max(Z.P & [-]Z);
prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]X));
prop EG(P) = max(X.P &([-]F | <->X));

I These definitions correspond to recursive equations.

I E.g., the definition of EF φ states that [[EF φ]] is the smallest
solution (min) of the equation

X = [[φ]] ∨ pre(X)

I In other words, in the Workbench a property is defined
through a (possibly recursive) equation.

The logic of the Workbench

I In order to encode CTL− in the Workbench’s logic, we write
prop AG(P) = max(Z.P & [-]Z);
prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]X));
prop EG(P) = max(X.P &([-]F | <->X));

I These definitions correspond to recursive equations.

I E.g., the definition of EF φ states that [[EF φ]] is the smallest
solution (min) of the equation

X = [[φ]] ∨ pre(X)

I In other words, in the Workbench a property is defined
through a (possibly recursive) equation.

The logic of the Workbench

I In order to encode CTL− in the Workbench’s logic, we write
prop AG(P) = max(Z.P & [-]Z);
prop EF(P) = min(X.P | <->X);
prop AF(P) = min(X.P | (<->T & [-]X));
prop EG(P) = max(X.P &([-]F | <->X));

I These definitions correspond to recursive equations.

I E.g., the definition of EF φ states that [[EF φ]] is the smallest
solution (min) of the equation

X = [[φ]] ∨ pre(X)

I In other words, in the Workbench a property is defined
through a (possibly recursive) equation.

