Communication and Concurrency
Lecture 12

Colin Stirling (cps)
School of Informatics

28th October 2013



Notation

» Assume P contains port b and Q contains port a



Notation

» Assume P contains port b and Q contains port a
» Define P —~ Q linking b to a: (P[c/b] | Q[c/a])\{c}
where ¢ is a new port (not contained in P or Q)



Notation

» Assume P contains port b and Q contains port a
» Define P~ Q linking b to a: (P[c/b] | Q[c/a])\{c}
where ¢ is a new port (not contained in P or Q)

> Example buffers B = 1(x o(x

i 9
i o, 0, o, o, 0
—_— _— = —_—= = B —— —

By = Blo1/0]
Bj11 = B[Oj/i,0j+1/o] 1<j<n-1
B, = Blog1/i]



Notation

» Assume P contains port b and Q contains port a
» Define P~ Q linking b to a: (P[c/b] | Q[c/a])\{c}
where ¢ is a new port (not contained in P or Q)

> Example buffers B = 1(x o(x

i 9
i o, 0, o, o, 0
—_— _— = —_—= = B —— —

By = Blo1/0]
Bj11 = B[Oj/i,0j+1/0] 1<j<n-1
B, = Blog1/i]

» Redo as n Bs with o linkingi: B~B ~... ~B



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)

» Want a sorter Sorter,, n > 0, capable of sorting n-length
sequences of positive integers



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)

» Want a sorter Sorter,, n > 0, capable of sorting n-length
sequences of positive integers

» Assume Sorter, has ports in, out



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)

» Want a sorter Sorter,, n > 0, capable of sorting n-length
sequences of positive integers

» Assume Sorter, has ports in, out

» |t accepts exactly n integers one by one at port in;



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)

» Want a sorter Sorter,, n > 0, capable of sorting n-length
sequences of positive integers

» Assume Sorter, has ports in, out
» |t accepts exactly n integers one by one at port in;

» Then it delivers them one by one in descending order at out,
terminated by a zero



Sorting machine example

» Where a system of size n+ 1 is defined in terms of a system
of size n. (From Milner’'s book 136ff.)

» Want a sorter Sorter,, n > 0, capable of sorting n-length
sequences of positive integers

» Assume Sorter, has ports in, out
» |t accepts exactly n integers one by one at port in;

» Then it delivers them one by one in descending order at out,
terminated by a zero

» And returns to start state



Sorting machine specification

» A multiset is a set with possibly multiple elements

{1,2,1} ={2,1,1} # {1,2}

S ranges over multisets of integers and max(S) min(S) are
maximum and minimum elements of S



Sorting machine specification

» A multiset is a set with possibly multiple elements

{1,2,1} = {2,1,1} # {1,2}
S ranges over multisets of integers and max(S) min(S) are
maximum and minimum elements of S

» Specification of sorter

Spec,, o in(x1)...1in(xp).Holds({x1, ..., %n})

Hold,(S) o out(max(S)).Hold,(S — {max(S)})
S#0

Hold,(@) = out(0).Spec,



Sorting machine specification

» A multiset is a set with possibly multiple elements

{1,2,1} ={2,1,1} # {1,2}

S ranges over multisets of integers and max(S) min(S) are
maximum and minimum elements of S

» Specification of sorter

Spec,, o in(x1)...1in(xp).Holds({x1, ..., %n})

Hold,(S) o out(max(S)).Hold,(S — {max(S)})
S#0

Hold,(0) % out(0).Spec,

» Alternatively assuming y1 > ... > y,
def —— — R
Hold,({y1,...,¥n}) = out(y1)...out(y,).out(0).Spec,



Sorting machine implementation |

» Use n simple cells C and a barrier cell B



Sorting machine implementation |

» Use n simple cells C and a barrier cell B

» C has ports in, down, up, out; B just has in, out



Sorting machine implementation |

» Use n simple cells C and a barrier cell B

» C has ports in, down, up, out; B just has in, out

» Notation: C —~ C where down in first C is linked to in of
second C and up of first C is linked to out of second C and
then these ports are internalised (restricted upon)



Sorting machine implementation |

» Use n simple cells C and a barrier cell B
» C has ports in, down, up, out; B just has in, out

» Notation: C —~ C where down in first C is linked to in of
second C and up of first C is linked to out of second C and
then these ports are internalised (restricted upon)

> Sorter,,défC/\.../\C/\B(n Cs)



Sorting machine implementation |

v

Use n simple cells C and a barrier cell B

v

C has ports in, down, up, out; B just has in, out

v

Notation: C —~ C where down in first C is linked to in of
second C and up of first C is linked to out of second C and
then these ports are internalised (restricted upon)
Sorter, ¥ C ~...~C~B (n Cs)

We need to define B and C so that: Sorter, ~ Spec,

v

v



Sorting machine implementation |

v

Use n simple cells C and a barrier cell B

v

C has ports in, down, up, out; B just has in, out
Notation: C —~ C where down in first C is linked to in of
second C and up of first C is linked to out of second C and
then these ports are internalised (restricted upon)
Sorter, ¥ C ~...~C~B (n Cs)

We need to define B and C so that: Sorter, ~ Spec,

v

v

v

v

Do it inductively

1. Base Case: B = Spec
2. General Step: Spec, ; ~ C —~ Spec,

3. Why? Sorter,. def C —~ Sorter,



Sorting machine implementation Il

» B is straightforward: B & out(0).B



Sorting machine implementation Il

» B is straightforward: B o out(0).B

» C is more involved

C
C'(x)
D(x,y)
C"(x)

def
def
def

def

in(x).C’(x)
down(x).C + up(y).D(x,y)

out(max({x,y})).C"(min({x, y}))
if x =0 then out(0).C else C’'(x)



Sorting machine implementation Il

» B is straightforward: B o out(0).B

» C is more involved

C ©F in(x).C'(x)
C'(x) % down(x).C+up(y).D(x,y)
D(x.y) < out(max({x,y})).C"(min({x,y}))

C"(x) % if x =0 then out(0).C else C'(x)

» Example: Sorters: C ~ C ~C ~ B



Proof of correctness

» Base Case: B = Spec,



Proof of correctness

» Base Case: B = Spec,

» General Step: Spec, ; ~ C —~ Spec, ~



Proof of correctness

» Base Case: B = Spec,
» General Step: Spec, ; ~ C —~ Spec, ~
» (in(x1).C'(x1)) — (in(z1)...1in(z,).Hold,({z1,...,2n})) =



Proof of correctness

» Base Case: B = Spec,

» General Step: Spec, ; ~ C —~ Spec, ~

» (in(x1).C'(x1)) — (in(z1)...1in(z,).Holds({z1,...,2n})) =

» in(xq).(down(x1).C +...) —~
(in(z1)...in(z,).Hold,({z1,...,2n})) =



Proof of correctness

» Base Case: B = Spec,

» General Step: Spec, ; ~ C —~ Spec, ~

» (in(x1).C'(x1)) — (in(z1)...1in(z,).Hold,({z1, ..., 2zn}))

» in(xq).(down(x1).C +...) —~
(in(z1)...in(z,).Hold,({z1,...,2n})) =

» in(x1).7.(C —~ (in(z2)...1in(z,).Hold,({x1, 22, ..., 2Zn})))

~
~



Proof of correctness

» Base Case: B = Spec,

» General Step: Spec, ; ~ C —~ Spec, ~

» (in(x1).C'(x1)) — (in(z1)...1in(z,).Holds({z1,...,2n})) =

» in(xq).(down(x1).C +...) —~
(in(z1)...in(z,).Hold,({z1,...,2n})) =

» in(x1).7.(C —~ (in(z2)...1in(z,).Hold,({x1, 22, ..., 2Zn})))

> in(x1)...1in(xp).in(xp+1).(C'(Xpt+1) — Holdp({x1,...,%n}))



Proof of correctness

vV V. Vv Y

» in(x1)...1in(x,).in(xp+1)-(C'(Xnt1) — Holdp({x1,. ..

Base Case: B ~ Spec

General Step: Spec,,; ~ C —~ Spec, ~
(in(x1).C'(x1)) — (in(z1) ... in(z,).Hold,({z1,. - .
in(xp).(down(x1).C +...) ~
(in(z1)...in(z,).Hold,({z1,...,2n})) =
in(x1).7.(C —~ (in(z2)...in(z,).Hold,({x1, 22, .

~
~

1 2n})) &

-5 2n})))

»Xn}))

» Result follows using following lemma where if S is any

multiset of size k and {x} US = {y1,...,yk+1} and
Y1202 Vit then



Proof of correctness

vV V. Vv Y

Base Case: B ~ Spec

General Step: Spec,,; ~ C —~ Spec, ~

(in(x1).C'(x1)) — (in(z1) ... 1in(z,).Hold,({z1,. .., 2n})) =
in(xp).(down(x1).C +...) ~
(in(z1)...in(z,).Hold,({z1,...,2n})) =

in(x1).7.(C —~ (in(z2)...1in(z,).Hold,({x1, 22, ..., 2n})))

~
~

> in(x1)...1in(xp).in(xp+1).(C'(Xpt+1) — Holdp({x1,...,%n}))
» Result follows using following lemma where if S is any

multiset of size k and {x} US = {y1,...,yk+1} and

Y1202 Vit then

C’(x) —~ Hold,(S) =~
T.out(y1)...out(yk+1).out(0).(C ~ Spec,)



