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Bj+1 ≡ B[oj/i, oj+1/o] 1 ≤ j < n − 1
Bn ≡ B[on−1/i]

◮ Redo as n Bs with o linking i: B ⌢ B ⌢ . . . ⌢ B



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)

◮ Want a sorter Sortern, n ≥ 0, capable of sorting n-length
sequences of positive integers



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)

◮ Want a sorter Sortern, n ≥ 0, capable of sorting n-length
sequences of positive integers

◮ Assume Sortern has ports in, out



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)

◮ Want a sorter Sortern, n ≥ 0, capable of sorting n-length
sequences of positive integers

◮ Assume Sortern has ports in, out

◮ It accepts exactly n integers one by one at port in;



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)

◮ Want a sorter Sortern, n ≥ 0, capable of sorting n-length
sequences of positive integers

◮ Assume Sortern has ports in, out

◮ It accepts exactly n integers one by one at port in;

◮ Then it delivers them one by one in descending order at out,
terminated by a zero



Sorting machine example

◮ Where a system of size n + 1 is defined in terms of a system
of size n. (From Milner’s book 136ff.)

◮ Want a sorter Sortern, n ≥ 0, capable of sorting n-length
sequences of positive integers

◮ Assume Sortern has ports in, out

◮ It accepts exactly n integers one by one at port in;

◮ Then it delivers them one by one in descending order at out,
terminated by a zero

◮ And returns to start state
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◮ A multiset is a set with possibly multiple elements

{1, 2, 1} = {2, 1, 1} 6= {1, 2}

S ranges over multisets of integers and max(S) min(S) are
maximum and minimum elements of S

◮ Specification of sorter

Specn

def
= in(x1) . . . in(xn).Holdn({x1, . . . , xn})

Holdn(S)
def
= out(max(S)).Holdn(S − {max(S)})

S 6= ∅

Holdn(∅)
def
= out(0).Specn

◮ Alternatively assuming y1 ≥ . . . ≥ yn

Holdn({y1, . . . , yn})
def
= out(y1) . . . out(yn).out(0).Specn
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◮ Use n simple cells C and a barrier cell B

◮ C has ports in, down, up, out; B just has in, out

◮ Notation: C ⌢ C where down in first C is linked to in of
second C and up of first C is linked to out of second C and
then these ports are internalised (restricted upon)

◮ Sortern
def
= C ⌢ . . . ⌢ C ⌢ B (n C s)

◮ We need to define B and C so that: Sortern ≈ Specn

◮ Do it inductively

1. Base Case: B ≈ Spec0

2. General Step: Specn+1 ≈ C ⌢ Specn

3. Why? Sortern+1

def
= C ⌢ Sortern
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◮ C is more involved

C
def
= in(x).C ′(x)

C ′(x)
def
= down(x).C + up(y).D(x , y)

D(x , y)
def
= out(max({x , y})).C ′′(min({x , y}))

C ′′(x)
def
= if x = 0 then out(0).C else C ′(x)



Sorting machine implementation II

◮ B is straightforward: B
def
= out(0).B

◮ C is more involved

C
def
= in(x).C ′(x)

C ′(x)
def
= down(x).C + up(y).D(x , y)

D(x , y)
def
= out(max({x , y})).C ′′(min({x , y}))

C ′′(x)
def
= if x = 0 then out(0).C else C ′(x)

◮ Example: Sorter3: C ⌢ C ⌢ C ⌢ B
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◮ Base Case: B ≈ Spec0

◮ General Step: Specn+1 ≈ C ⌢ Specn ≈

◮ (in(x1).C
′(x1)) ⌢ (in(z1) . . . in(zn).Holdn({z1, . . . , zn})) ≈

◮ in(x1).(down(x1).C + . . .) ⌢
(in(z1) . . . in(zn).Holdn({z1, . . . , zn})) ≈

◮ in(x1).τ.(C ⌢ (in(z2) . . . in(zn).Holdn({x1, z2, . . . , zn})))

≈
...

◮ in(x1) . . . in(xn).in(xn+1).(C
′(xn+1) ⌢ Holdn({x1, . . . , xn}))

◮ Result follows using following lemma where if S is any
multiset of size k and {x} ∪ S = {y1, . . . , yk+1} and
y1 ≥ . . . ≥ yk+1 then

◮ C ′(x) ⌢ Holdn(S) ≈
τ.out(y1) . . . out(yk+1).out(0).(C ⌢ Specn)


