Showing bisimilarity

To establish $E \sim F$

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions

Communication and Concurrency Lectures 10 & 11

Colin Stirling (cps)

School of Informatics

21st October 2013

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Showing bisimilarity

To establish $E \sim F$

1. Present a candidate relation R with $(E, F) \in R$

2. Prove that indeed it obeys the hereditary conditions

Example: $(A|B) \setminus c \sim C_1$

$$A \stackrel{\text{def}}{=} a.\overline{c}.A$$

$$B \stackrel{\text{def}}{=} c.\overline{b}.B$$

$$C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$$

$$C_1 \stackrel{\text{def}}{=} a.C_3$$

$$C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

Showing bisimilarity

To establish $E \sim F$

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions

Example: $(A|B) \setminus c \sim C_1$

$$A \stackrel{\text{def}}{=} a.\overline{c}.A$$

$$B \stackrel{\text{def}}{=} c.\overline{b}.B$$

$$C_0 \stackrel{\text{def}}{=} \overline{b}.C_1 + a.C_2$$

$$C_1 \stackrel{\text{def}}{=} a.C_3$$

$$C_2 \stackrel{\text{def}}{=} \overline{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

R below is a bisimulation

 $\{ ((A|B) \setminus c, C_1), ((\overline{c}.A|B) \setminus c, C_3) \\ ((A|\overline{b}.B) \setminus c, C_0), ((\overline{c}.A|\overline{b}.B) \setminus c, C_2) \}$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

Showing Bisimilarity II

Some Results

Same sort of argument establishes that \sim is a congruence.

- 1. if $E \sim F$ then $G|E \sim G|F$
- 2. Proof: Assume that $E \sim F$, so there is a bisimulation B with $(E, F) \in B$.
- 3. Let C be the relation

$$\{(H|E',H|F') : (E',F') \in B\}$$

4. Show that C is a bisimulation ...

$$\begin{array}{lll} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. \ (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a bisimulation. Then the following are bisimulations:

1. Id 2. B_i^{-1} 3. B_1B_2 4. $\bigcup \{B_i : i \ge 1\}$ Corollary \sim is the largest bisimulation

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ─ ≧ ─ 約९...

・ロト・4回ト・4目ト・4目ト 目 のへ()

A bigger example: $Cnt \sim Ct'_0$

A bigger example: $\mathtt{Cnt}\sim\mathtt{Ct}_0'$

 $\begin{array}{rcl} P_0 & = & \{ \texttt{Cnt} \mid 0^j \, : \, j \geq 0 \} \\ P_{i+1} & = & \{ E \mid 0^j \mid \texttt{down.0} \mid 0^k \, : \, E \in P_i \text{ and } j \geq 0 \text{ and } k \geq 0 \} \end{array}$

where $F \mid 0^0 = F$ and $F \mid 0^{i+1} = F \mid 0^i \mid 0$ and brackets are dropped between parallel components.

A bigger example: $Cnt \sim Ct'_0$

 $\begin{array}{rcl} P_0 & = & \{ \texttt{Cnt} \mid 0^j \, : \, j \ge 0 \} \\ P_{i+1} & = & \{ E \mid 0^j \mid \texttt{down.0} \mid 0^k \, : \, E \in P_i \text{ and } j \ge 0 \text{ and } k \ge 0 \} \end{array}$

where $F \mid 0^0 = F$ and $F \mid 0^{i+1} = F \mid 0^i \mid 0$ and brackets are dropped between parallel components.

 $B = \{(E, Ct'_i) : i \ge 0 \text{ and } E \in P_i\}$ is a bisimulation

More Properties I

Proposition

1. $E + F \sim F + E$ 2. $E + (F + G) \sim (E + F) + G$ 3. $E + 0 \sim E$ 4. $E + E \sim E$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

More Properties I

More Properties II

.

Proposition

1. $E + F \sim F + E$ 2. $E + (F + G) \sim (E + F) + G$ 3. $E + 0 \sim E$ 4. $E + E \sim E$

Proposition

- 1. $E|F \sim F|E$
- 2. $E|(F|G) \sim (E|F)|G$
- 3. $E|0 \sim E$

Proposition

- 1. $(E+F)\setminus K \sim E\setminus K + F\setminus K$
- 2. $(a.E)\setminus K \sim 0$ if $a \in K \cup \overline{K}$
- 3. $(a.E)\setminus K \sim a.(E\setminus K)$ if $a \notin K \cup \overline{K}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

Expansion law

• Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$

◆□> ◆圖> ◆目> ◆目> 目 のQQ

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}, y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- SUM1 is $\sum \{a_{ij}, y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{ \tau. y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij} \}$

Expansion law

- Assume $x_i \sim \sum \{a_{ij}.x_{ij} : 1 \le j \le n_i\}$ for $i: 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- $y_{klij} = x_1 | \dots | x_{k-1} | x_{kl} | x_{k+1} | \dots | x_{ij} | x_{i+1} | \dots | x_m$

・ロト・日下・日下・日下・日 うへぐ

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- ▶ SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij}\}$
- $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- $y_{klij} = x_1 \mid \ldots \mid x_{k-1} \mid x_{kl} \mid x_{k+1} \mid \ldots \mid x_{ij} \mid x_{i+1} \mid \ldots \mid x_m$
- ► Example

$$x_1 \sim a.x_{11} + b.x_{12} + a.x_{13}$$

 $x_2 \sim \overline{a}.x_{21} + c.x_{22},$

Expansion law

- Assume $x_i \sim \sum \{a_{ij} \cdot x_{ij} : 1 \le j \le n_i\}$ for $i : 1 \le i \le m$
- Then $x_1 \mid \ldots \mid x_m \sim \text{SUM1} + \text{SUM2}$
- SUM1 is $\sum \{a_{ij}.y_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n_i\}$
- ▶ SUM2 is $\sum \{\tau.y_{klij} : 1 \le k < i \le m \text{ and } a_{kl} = \overline{a}_{ij} \}$
- ► $y_{ij} = x_1 | \dots | x_{i-1} | x_{ij} | x_{i+1} | \dots | x_m$
- $y_{klij} = x_1 \mid \ldots \mid x_{k-1} \mid x_{kl} \mid x_{k+1} \mid \ldots \mid x_{ij} \mid x_{i+1} \mid \ldots \mid x_m$
- Example

$$\begin{array}{rcl} x_1 & \sim & a.x_{11} + b.x_{12} + a.x_{13} \\ x_2 & \sim & \overline{a}.x_{21} + c.x_{22}, \end{array}$$

 $\begin{array}{rcl} x_1|x_2 & \sim & a.(x_{11}|x_2) + b.(x_{12}|x_2) + a.(x_{13}|x_2) + \\ & & \overline{a}.(x_1|x_{21}) + \\ & & c.(x_1|x_{22}) + \tau.(x_{11}|x_{21}) + \tau.(x_{13}|x_{21}). \end{array}$

Weak (observable) bisimulations

Weak (observable) bisimulations

▶ A binary relation *B* between processes is a weak (or observable) bisimulation provided that, whenever $(E, F) \in B$ and $a \in O \cup \{\varepsilon\}$,

- ▶ A binary relation *B* between processes is a weak (or observable) bisimulation provided that, whenever $(E, F) \in B$ and $a \in O \cup \{\varepsilon\}$,
- ▶ if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Weak (observable) bisimulations

Weak (observable) bisimulations

- ▶ A binary relation *B* between processes is a weak (or observable) bisimulation provided that, whenever $(E, F) \in B$ and $a \in \mathbf{O} \cup \{\varepsilon\}$,
- if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and
- if $F \stackrel{a}{\Longrightarrow} F'$ then $E \stackrel{a}{\Longrightarrow} E'$ for some E' such that $(E', F') \in B$

- ► A binary relation *B* between processes is a weak (or observable) bisimulation provided that, whenever $(E, F) \in B$ and $a \in O \cup \{\varepsilon\}$,
- if $E \stackrel{a}{\Longrightarrow} E'$ then $F \stackrel{a}{\Longrightarrow} F'$ for some F' such that $(E', F') \in B$ and
- ▶ if $F \stackrel{a}{\Longrightarrow} F'$ then $E \stackrel{a}{\Longrightarrow} E'$ for some E' such that $(E', F') \in B$
- \blacktriangleright Two processes *E* and *F* are weak bisimulation equivalent (or weakly bisimilar) if there is a weak bisimulation relation Bsuch that $(E, F) \in B$. We write $E \approx F$ if E and F are weakly bisimilar

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Exercise

Exercise

Which of the following are weakly bisimilar?

		Y/N
a. <i>t</i> .b.0	a.b.0	
a.(b.0 + τ .c.0)	a.(b.0 + c.0)	
a.(b.0 + τ .c.0)	$a.(b.0 + \tau.c.0) + a.c.0$	
a.0 + b.0 + τ .b.0	$a.0 + \tau.b.0$	
a.0 + b.0 + τ .b.0	a.0+b.0	
a.(b.0 + τ .b.0)	a.b.0	

Which of the following are weakly bisimilar?

		Y/N
a. <i>t</i> .b.0	a.b.0	Y
a.(b.0 + τ .c.0)	a.(b.0+c.0)	Ν
a.(b.0 + τ .c.0)	$a.(b.0 + \tau.c.0) + a.c.0$	Y
$\texttt{a.0+b.0+}\tau.\texttt{b.0}$	$a.0 + \tau.b.0$	Y
$\texttt{a.0+b.0+}\tau.\texttt{b.0}$	a.0+b.0	N
a.(b.0 + τ .b.0)	a.b.0	Y

・・・・
 ・・・
 ・・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・
 ・・

Showing weak bisimilarity \approx

1. Present a candidate relation R with $(E, F) \in R$

Showing weak bisimilarity \approx

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Showing weak bisimilarity pprox

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions
- 3. Example

$$A_{0} \stackrel{\text{def}}{=} a.A_{0} + b.A_{1} + \tau.A_{1}$$

$$A_{1} \stackrel{\text{def}}{=} a.A_{1} + \tau.A_{2}$$

$$A_{2} \stackrel{\text{def}}{=} b.A_{0}$$

$$B_{1} \stackrel{\text{def}}{=} a.B_{1} + \tau.B_{2}$$

$$B_{2} \stackrel{\text{def}}{=} b.B_{1}$$

Showing weak bisimilarity \approx

- 1. Present a candidate relation R with $(E, F) \in R$
- 2. Prove that indeed it obeys the hereditary conditions
- 3. Example

$$\begin{array}{rcl} A_0 & \stackrel{\mathrm{def}}{=} & a.A_0 + b.A_1 + \tau.A_1 \\ A_1 & \stackrel{\mathrm{def}}{=} & a.A_1 + \tau.A_2 \\ A_2 & \stackrel{\mathrm{def}}{=} & b.A_0 \\ \end{array}$$
$$\begin{array}{rcl} B_1 & \stackrel{\mathrm{def}}{=} & a.B_1 + \tau.B_2 \\ B_2 & \stackrel{\mathrm{def}}{=} & b.B_1 \end{array}$$

4. $A_0 \approx B_1$

$$\{(A_0, B_1), (A_1, B_1), (A_2, B_2)\}$$

is a weak bisimulation

・ロト・西ト・ヨト・ヨー りへぐ

Weak bisimulation: less redundancy

Weak bisimulation: less redundancy

• For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.

▲□▶▲□▶▲□▶▲□▶ □ の�?

Weak bisimulation: less redundancy

For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .

- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$, 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.
- ► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.

Weak bisimulation: less redundancy

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- A binary relation B between processes is an ob bisimulation just in case whenever (E, F) ∈ B and a ∈ A,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$, 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.
- ► Two processes are ob equivalent, denoted by ≈', if they are related by an ob bisimulation relation.
- Proposition

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- \blacktriangleright A binary relation *B* between processes is an ob bisimulation just in case whenever $(E, F) \in B$ and $a \in A$,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$,
 - 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.
- **•** Two processes are ob equivalent, denoted by \approx' , if they are related by an ob bisimulation relation.
- Proposition
 - 1. B is a weak bisim if, and only if B is an ob bisim

- For $a \in A$ let \hat{a} be a if $a \neq \tau$, and let $\hat{\tau}$ be ε .
- \blacktriangleright A binary relation *B* between processes is an ob bisimulation just in case whenever $(E, F) \in B$ and $a \in A$,
 - 1. if $E \xrightarrow{a} E'$ then $F \xrightarrow{\hat{a}} F'$ for some F' such that $(E', F') \in B$, 2. if $F \xrightarrow{a} F'$ then $E \xrightarrow{\hat{a}} E'$ for some E' such that $(E', F') \in B$.
- **•** Two processes are ob equivalent, denoted by \approx' , if they are related by an ob bisimulation relation.
- ► Proposition
 - 1. B is a weak bisim if, and only if B is an ob bisim 2. $\approx = \approx'$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣��

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Protocol that may lose messages

$Protocol \approx Cop$

Let B be the following relation

```
{(Protocol, Cop)} ∪
\{((\text{Send1}(m) \mid \text{Medium} \mid \overline{\text{ok}}.\text{Receiver}) \setminus J, \}
               Cop) : m \in D \} \cup
\{((\overline{sm}(m).\text{Send1}(m) \mid \text{Medium} \mid \text{Receiver}) \setminus J,\}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \text{Med1}(m) \mid \text{Receiver}) \setminus J,
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \text{Medium} \mid \overline{\text{out}}(m), \overline{\text{ok}}, \text{Receiver}) \setminus J, \}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D \} \cup
\{((\text{Send1}(m) \mid \overline{\text{ms}}.\text{Medium} \mid \text{Receiver}) \setminus J, \}
               \overline{\operatorname{out}}(m).\operatorname{Cop}) : m \in D
```

B is a weak bisimulation

▲□▶▲□▶▲□▶▲□▶ = のへで

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Sender
$$\stackrel{\text{def}}{=}$$
 $in(x).\overline{sm}(x).\text{Send1}(x)$ Send1(x) $\stackrel{\text{def}}{=}$ $ms.\overline{sm}(x).\text{Send1}(x) + \text{ok.Sender}$ Medium $\stackrel{\text{def}}{=}$ $sm(y).\text{Med1}(y)$ Med1(y) $\stackrel{\text{def}}{=}$ $\overline{mr}(y).\text{Medium} + \tau.\overline{ms}.\text{Medium}$ Receiver $\stackrel{\text{def}}{=}$ $mr(x).\overline{out}(x).\overline{ok}.\text{Receiver}$ Protocol \equiv (Sender | Medium | Receiver)\{sm,ms,mr,ok}

$$Cop \qquad \stackrel{\mathrm{def}}{=} \operatorname{in}(x).\overline{\operatorname{out}}(x).Cop$$

Properties of weak bisimulation

Properties of weak bisimulation

$$\begin{array}{lll} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : \, (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \, \text{there is } F. \, (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of weak bisimulation

$$\begin{array}{lll} ld & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : \, (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \, \text{there is } F. \, (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

1. *Id*

Properties of weak bisimulation

$$\begin{array}{lll} ld & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

1. *Id* 2. B_i^{-1}

Properties of weak bisimulation

$$\begin{array}{lll} ld & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

2. B_i^{-1}

3.
$$B_1B_2$$

Properties of weak bisimulation

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

1. *Id* 2. B_i^{-1} 3. B_1B_2 4. $\bigcup \{B_i : i \ge 1\}$

< ロ > < 団 > < 三 > < 三 > < 三 > の < ()</p>

▲□ → ▲雪 → ▲雪 → ▲雪 → ▲目 → ● ● ●

Properties of weak bisimulation

$$\begin{array}{rcl} Id & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

- 1. Id
- 2. B_i^{-1}
- 3. B_1B_2
- $4. \bigcup \{B_i : i \ge 1\}$

Corollary \approx is the largest weak bisimulation

Properties of weak bisimulation

 $\begin{array}{lll} \textit{Id} & = & \{(E,E)\} \\ B^{-1} & = & \{(E,F) : (F,E) \in B\} \\ B_1B_2 & = & \{(E,G) : \text{ there is } F. \ (E,F) \in B_1 \\ & & \text{and } (F,G) \in B_2\} \end{array}$

Proposition Assume B_i (i = 1, 2, ...) is a weak bisimulation. Then the following are weak bisimulations:

1. Id 2. B_i^{-1} 3. B_1B_2 4. $\bigcup \{B_i : i \ge 1\}$ Corollary \approx is the largest weak bisimulation 1. $a.\tau.E \approx a.E$

2. $E + \tau \cdot E \approx \tau \cdot E$

3. $a.(E + \tau.F) + a.F \approx a.(E + \tau.F)$

But

≈ is not a congruence with respect to the + operator. (It is a congruence w.r.t the other operators of CCS.)
 Due to initial preemptive power of τ

But

≈ is not a congruence with respect to the + operator. (It is a congruence w.r.t the other operators of CCS.)
 Due to initial preemptive power of τ

• $E \approx \tau.E$ but many cases $E + F \not\approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \not\approx \tau.a.0 + b.0$ ≈ is not a congruence with respect to the + operator. (It is a congruence w.r.t the other operators of CCS.)
 Due to initial preemptive power of τ

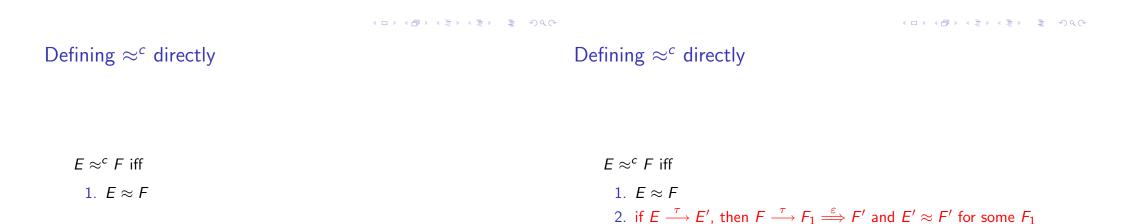
- $E \approx \tau.E$ but many cases $E + F \not\approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \not\approx \tau.a.0 + b.0$
- \approx^{c} is the largest subset of \approx that is also a congruence.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $E \approx^{c} F$ iff

and F'

- ≈ is not a congruence with respect to the + operator. (It is a congruence w.r.t the other operators of CCS.)
 Due to initial preemptive power of τ
- $E \approx \tau.E$ but many cases $E + F \not\approx \tau.E + F$ $a.0 \approx \tau.a.0$ but $a.0 + b.0 \not\approx \tau.a.0 + b.0$
- $\blacktriangleright \approx^c$ is the largest subset of \approx that is also a congruence.
- ightarrow pprox is a congruence for all the other operators of CCS.



Defining \approx^{c} directly

 $E \approx^{c} F$ iff

1. $E \approx F$

- 2. if $E \xrightarrow{\tau} E'$, then $F \xrightarrow{\tau} F_1 \xrightarrow{\varepsilon} F'$ and $E' \approx F'$ for some F_1 and F'
- 3. if $F \xrightarrow{\tau} F'$ then $E \xrightarrow{\tau} E_1 \stackrel{\varepsilon}{\Longrightarrow} E'$ and $E' \approx F'$ for some E_1 and E'.

▲□▶▲□▶▲目▶▲目▶ 目 のへの