
Communication and Concurrency

Lecture 1

Colin Stirling (cps)

School of Informatics

September 19th 2013



First example

A clock that perpetually ticks

Cl
def
= tick.Cl

◮ tick action name

◮ Cl process name

◮
def
= ties a process name to a process expression

◮ tick.Cl process expression

◮ . prefix operator



Behaviour: transitions

Behaviour of processes is captured by transitions

E
a

−→ F

Goal-directed rules for deriving transitions

◮ axiom (.)

R(.) a.E
a

−→ E



Behaviour: transitions

Behaviour of processes is captured by transitions

E
a

−→ F

Goal-directed rules for deriving transitions

◮ axiom (.)

R(.) a.E
a

−→ E

◮
def
=

R(
def
=)

P
a

−→ F

E
a

−→ F
P

def
= E



Behaviour: transitions

Behaviour of processes is captured by transitions

E
a

−→ F

Goal-directed rules for deriving transitions

◮ axiom (.)

R(.) a.E
a

−→ E

◮
def
=

R(
def
=)

P
a

−→ F

E
a

−→ F
P

def
= E

Example

Cl
tick
−→ Cl



Behaviour: transition graphs

tick

Cl

Figure: The transition graph for Cl



Behaviour: transition graphs

tick

Cl

Figure: The transition graph for Cl

Labelled graph

◮ vertices: process expressions

◮ labelled edges: transitions

◮ Each derivable transition of a vertex is depicted

◮ Abstract from the derivations of transitions



Interlude: exercise

Draw the transition graphs for the following clocks

1. Cl1
def
= tick.tock.Cl1



Interlude: exercise

Draw the transition graphs for the following clocks

1. Cl1
def
= tick.tock.Cl1

2. Cl2
def
= tick.tick.Cl2



Interlude: exercise

Draw the transition graphs for the following clocks

1. Cl1
def
= tick.tock.Cl1

2. Cl2
def
= tick.tick.Cl2

3. Cl3
def
= tick.Cl



The + operator

Ven
def
= 2p.Venb + 1p.Venl

Venb
def
= big.collectb.Ven

Venl
def
= little.collectl.Ven

Transition Rule

R(+)
E1 + E2

a
−→ F

E1
a

−→ F

E1 + E2
a

−→ F

E2
a

−→ F



Transition Graph

Ven

Ven Venl

collectb .Ven collect .Venl

2p 1p

big little

collectb collectl

b



Generalising: indexed definitions

Ct0
def
= up.Ct1 + round.Ct0

Cti+1
def
= up.Cti+2 + down.Cti

Ct3
up
−→ Ct4

up.Ct4 + down.Ct2
up
−→ Ct4

up.Ct4
up
−→ Ct4

Ct0 Ct1 ... Cti ...

down down down down

up up up up

round



Generalising: indexed sums

∑
{Ei : i ∈ I} I indexing set

(E1 + E2 abbreviates
∑

{Ei : i ∈ {1, 2}})



Generalising: indexed sums

∑
{Ei : i ∈ I} I indexing set

(E1 + E2 abbreviates
∑

{Ei : i ∈ {1, 2}})

Reg′i
def
= readi.Reg

′

i +
∑

{writej .Reg
′

j : j ∈ N}



Generalising: indexed sums

∑
{Ei : i ∈ I} I indexing set

(E1 + E2 abbreviates
∑

{Ei : i ∈ {1, 2}})

Reg′i
def
= readi.Reg

′

i +
∑

{writej .Reg
′

j : j ∈ N}

Transition Rule for Σ

R(
∑

)

∑
{Ei : i ∈ I}

a
−→ F

Ej
a

−→ F
j ∈ I



Generalising: indexed sums

∑
{Ei : i ∈ I} I indexing set

(E1 + E2 abbreviates
∑

{Ei : i ∈ {1, 2}})

Reg′i
def
= readi.Reg

′

i +
∑

{writej .Reg
′

j : j ∈ N}

Transition Rule for Σ

R(
∑

)

∑
{Ei : i ∈ I}

a
−→ F

Ej
a

−→ F
j ∈ I

Special Case
∑

{Ei : i ∈ ∅} abbreviated to 0 “nil”



Generalising: parameterized actions

◮ input of data at port a, a(x).E
a(x) binds free occurrences of x in E . Port a represents
{a(v) : v ∈ D} where D is a family of data values



Generalising: parameterized actions

◮ input of data at port a, a(x).E
a(x) binds free occurrences of x in E . Port a represents
{a(v) : v ∈ D} where D is a family of data values

◮ output of data at port a, a(e).E
where e is a data expression.



Generalising: parameterized actions

◮ input of data at port a, a(x).E
a(x) binds free occurrences of x in E . Port a represents
{a(v) : v ∈ D} where D is a family of data values

◮ output of data at port a, a(e).E
where e is a data expression.

◮ Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates



Generalising: parameterized actions

◮ input of data at port a, a(x).E
a(x) binds free occurrences of x in E . Port a represents
{a(v) : v ∈ D} where D is a family of data values

◮ output of data at port a, a(e).E
where e is a data expression.

◮ Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates

◮ R(in) a(x).E
a(v)
−→ E{v/x} if v ∈ D

where {v/x} is substitution



Generalising: parameterized actions

◮ input of data at port a, a(x).E
a(x) binds free occurrences of x in E . Port a represents
{a(v) : v ∈ D} where D is a family of data values

◮ output of data at port a, a(e).E
where e is a data expression.

◮ Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates

◮ R(in) a(x).E
a(v)
−→ E{v/x} if v ∈ D

where {v/x} is substitution

◮ R(out) a(e).E
a(v)
−→ E if Val(e) = v



Examples

R(in) a(x).E
a(v)
−→ E{v/x} if v ∈ D

R(out) a(e).E
a(v)
−→ E if Val(e) = v



Examples

R(in) a(x).E
a(v)
−→ E{v/x} if v ∈ D

R(out) a(e).E
a(v)
−→ E if Val(e) = v

A Copier: Cop
def
= in(x).out(x).Cop

Cop
in(v)
−→ out(v).Cop

in(x).out(x).Cop
in(v)
−→ out(v).Cop



Examples

R(in) a(x).E
a(v)
−→ E{v/x} if v ∈ D

R(out) a(e).E
a(v)
−→ E if Val(e) = v

A Copier: Cop
def
= in(x).out(x).Cop

Cop
in(v)
−→ out(v).Cop

in(x).out(x).Cop
in(v)
−→ out(v).Cop

A Register: Regi
def
= read(i).Regi + write(x).Regx

Reg5
write(3)
−→ Reg3

read(5).Reg5 + write(x).Regx

write(3)
−→ Reg3

write(x).Regx

write(3)
−→ Reg3



Exercise

Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers

1. Cop
def
= in(x).out(x).Cop



Exercise

Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers

1. Cop
def
= in(x).out(x).Cop

2. Cop1
def
= in(x).in(x).out(x).Cop1



Exercise

Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers

1. Cop
def
= in(x).out(x).Cop

2. Cop1
def
= in(x).in(x).out(x).Cop1

3. Cop2
def
= in(x).out(x).out(x).Cop2



Summary

◮ Introduction of process expressions, process combinators



Summary

◮ Introduction of process expressions, process combinators

◮ Derivation of transitions between expressions



Summary

◮ Introduction of process expressions, process combinators

◮ Derivation of transitions between expressions

◮ Abstraction of derivations into transition graphs



Summary

◮ Introduction of process expressions, process combinators

◮ Derivation of transitions between expressions

◮ Abstraction of derivations into transition graphs

◮ Background Reading: Chapter 1 of
R. Milner, Communication and Concurrency, Prentice-Hall


