Communication and Concurrency

Lecture 1

Colin Stirling (cps)
School of Informatics

September 19th 2013

Behaviour: transitions
Behaviour of processes is captured by transitions
E-F
Goal-directed rules for deriving transitions

» axiom (.)

R(.) aE->-E

First example

A clock that perpetually ticks

c1 ¥ tick.c1

tick action name

v

v

C1 process name

def . .
= tiles a process name to a process expression

v

v

tick.C1l process expression

\4

. prefix operator

Behaviour: transitions

Behaviour of processes is captured by transitions

E-F
Goal-directed rules for deriving transitions
» axiom (.)
R() aE->ZE
def
> =



Behaviour: transitions

Behaviour of processes is captured by transitions

E2F
Goal-directed rules for deriving transitions
» axiom (.)
R() aE-SE
def
> =
P25 F
R(E) ——5— P
E—F
Example
c1 2% 1

Behaviour: transition graphs

a

tick

Figure: The transition graph for C1

Labelled graph
> vertices: process expressions

» labelled edges: transitions

» Each derivable transition of a vertex is depicted

» Abstract from the derivations of transitions

Behaviour: transition graphs

tick

Figure: The transition graph for C1

Interlude: exercise

Draw the transition graphs for the following clocks

1. 1y & £ick.tock.Cly



Interlude: exercise Interlude: exercise

Draw the transition graphs for the following clocks Draw the transition graphs for the following clocks
1. c1; © tick.tock.Cl, 1. ¢1; @ tick.tock.Cl,
2. Cly, ¥ tick tick.Cl, 2. Cly, ¥ tick.tick.Cl,
3. C1s ¥ tick.c1

The + operator Transition Graph

Ven def 2p.Veny + 1p.Ven;

Veny def big.collecty.Ven Ven

Ven; def little.collect;.Ven col l'ect 7 \1\p col I ect,
Transition Rule

EE+E-F E+E-SF
R E - F

Ven

4 N

col | ect b - Ven

E, -2 F

col | ect . Ven



Generalising: indexed definitions

Cto =f up.Cty + round.Ctyp

Cti+1 up.CtiJrg -+ dOWIl.Cti

Cts i Ctqg

up.Ctys + down.Cty u_p) Cty

up
up.Cty — Ctg

up up up up

round down down down down
Generalising: indexed sums
Y {E; : i €1} I indexing set
(E1 + E, abbreviates Y {E; : i € {1,2}})

Reg’ def read; Reg’ + Z{Writej.Regj- . jeN}

Generalising: indexed sums

Y {E;i : i €1} | indexing set
(E1 + Ep abbreviates > {E;

i€ {L2}})
Generalising: indexed sums

Y {Ei : i €1} I indexing set

(E1 + E, abbreviates Y {E; : i € {1,2}})

Reg’ def read; .Reg + Z{Writej.Reg} . j €N}

Transition Rule for

R(Y) Z{E,-L_:_.ii/},»:—> F

jel



Generalising: indexed sums

Y {E;i : i € I} | indexing set
(E1 + Ep abbreviates > {E; : i € {1,2}})

Regll déf readi.Reg/i + Z{Writej'Reg} : ‘j < N}

Transition Rule for

R(Z) Z{EIE:.I.;ITE—) FjE/

Special Case > {E; : i € ()} abbreviated to 0 “nil”

Generalising: parameterized actions

» input of data at port a, a(x).E
a(x) binds free occurrences of x in E. Port a represents
{a(v) : v € D} where D is a family of data values

» output of data at port a, a(e).E
where e is a data expression.

Generalising: parameterized actions

> input of data at port a, a(x).E
a(x) binds free occurrences of x in E. Port a represents
{a(v) : v € D} where D is a family of data values

Generalising: parameterized actions

» input of data at port a, a(x).E
a(x) binds free occurrences of x in E. Port a represents
{a(v) : v € D} where D is a family of data values

» output of data at port a, a(e).E
where e is a data expression.

» Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates



Generalising: parameterized actions

» input of data at port a, a(x).E
a(x) binds free occurrences of x in E. Port a represents
{a(v) : v € D} where D is a family of data values

» output of data at port a, a(e).E
where e is a data expression.

» Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates

> R(in) a(x).E 2 E{v/x} if veD
where {v/x} is substitution

Generalising: parameterized actions

> input of data at port a, a(x).E
a(x) binds free occurrences of x in E. Port a represents
{a(v) : v € D} where D is a family of data values

» output of data at port a, a(e).E
where e is a data expression.

» Transition Rules: depend on extra machinery for expression
evaluation. Let Val(e) be data value in D (if there is one) to
which e evaluates

> R(in) a(x).E 2 E{v/x} if veD
where {v/x} is substitution

» R(owt) 3(e).E 2 E if Val(e) = v

Examples Examples

R(in) a(x).E 2 E{v/x} if veD
R(out) 3(e).E L E if Val(e) = v
A Copier: Cop -3 in(x).out(x).Cop

R(in) a(x).E 22 E{v/x} if veD

R(out) a(e).E 2 E if Val(e) = v

in(v)

Cop — out(v).Cop

in(x).out(x).Cop pat/ out(v).Cop



Examples

R(in) a(x).E 2 E{v/x} if veD
R(out) a(e).E M E if Val(e) = v

A Copier: Cop dof in(x).out(x).Cop

Cop taly) out(v).Cop

in(x).out(x).Cop ) out(v).Cop
A Register: Reg; aof read(/).Reg; + write(x).Reg,

write(3)

Regs —— "Regs
ite(3
read(5).Regs + write(x).Reg, write(3) Regs
write(3)

write(x).Reg, —— Regs

Exercise

Assume that the space of values consists of two elements, 0 and 1.

Draw transition graphs for the following three copiers
1. Cop & in(x).out(x).Cop

2. Copy o in(x).in(x).out(x).Copy

Exercise

Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers

1. Cop & in(x).out(x).Cop

Exercise

Assume that the space of values consists of two elements, 0 and 1.
Draw transition graphs for the following three copiers

1. Cop o in(x).out(x).Cop
2. Copy o in(x).in(x).out(x).Copy

3. Cops ¥ in(x).out(x).out(x).Cops



Summary Summary

» Introduction of process expressions, process combinators » Introduction of process expressions, process combinators

» Derivation of transitions between expressions

Summary Summary
» Introduction of process expressions, process combinators » Introduction of process expressions, process combinators
» Derivation of transitions between expressions » Derivation of transitions between expressions
» Abstraction of derivations into transition graphs » Abstraction of derivations into transition graphs

» Background Reading: Chapter 1 of
R. Milner, Communication and Concurrency, Prentice-Hall



