Communication and Concurrency: Introduction

Colin Stirling (cps)
School of Informatics

16th September 2013

Goals

» Modelling: a notation for describing concurrent systems (CCS)

Goals

» Modelling: a notation for describing concurrent systems (CCS)

» Equivalence: when two descriptions are the same system

Goals

» Modelling: a notation for describing concurrent systems (CCS)
» Equivalence: when two descriptions are the same system

» Properties: modal and temporal properties of systems.

Goals

Modelling: a notation for describing concurrent systems (CCS)
Equivalence: when two descriptions are the same system

Properties: modal and temporal properties of systems.

vV v v Y

Model checking: algorithmic techniques for checking
equivalence and properties.

Goals

vV v v Y

Modelling: a notation for describing concurrent systems (CCS)
Equivalence: when two descriptions are the same system
Properties: modal and temporal properties of systems.

Model checking: algorithmic techniques for checking
equivalence and properties.

Software tools: automatically checks properties and
equivalence

An Example: Mutual Exclusion

Mutua Exclusion

< <
Protocol

Specification: Temporal Properties

» Mutual exclusion

Specification: Temporal Properties

» Mutual exclusion

» Absence of deadlock

Specification: Temporal Properties

» Mutual exclusion
» Absence of deadlock

» Absence of starvation

CCS model of Peterson’s solution

B1f = blrf.B1f 4+ blwf.B1f + blwt.Blt
Blt = blrt.Blt + blwt.B1t + blwf.B1f
B2f = b2rf.B2f + b2wf.B2f + b2wt.B2t
B2t = b2rt.B2t + b2wt.B2t + b2wf.B2f
Kl = krl.KL + kwl.K1 + kw2.K2
K2 = kr2.K2 + kw2.K2 + kwl.K1
P1 = blwt.reql. kw2.P11
P11 = b2rt.P11 + b2rf.P12 + kr2.P11 +
krl.P12
P12 = enterl.exitl.blwf.P1
P2 = b2wt.req2.kwl.P21
P21 = blrf.P22 + blrt.P21 + krl.P21 +
kr2.P22
P22 = enter2.exit2.b2wf.P2

Peterson = (P1| P2 | K1 | B1f | B2f) \L

Formalising Temporal Properties

Mutex = AG ([exitl]ff V [exit2] ff)
NoDeadlock = AG (—) tt
NoStarvation = AG([reql] AF (exitl) tt) A

AG([req2] AF (exit2) tt)

Model checking

» The Edinburgh Concurrency Workbench

» A tool for simulating and verifying CCS agents
> http://homepages.inf.ed.ac.uk/perdita/cwb/

Model checking

» The Edinburgh Concurrency Workbench

» A tool for simulating and verifying CCS agents
> http://homepages.inf.ed.ac.uk/perdita/cwb/

» Proving Peterson’s solution correct

Model checking

» The Edinburgh Concurrency Workbench

» A tool for simulating and verifying CCS agents
> http://homepages.inf.ed.ac.uk/perdita/cwb/

» Proving Peterson’s solution correct
» Command: checkprop(Peterson,Mutex);

» Command: checkprop(Peterson,NoDeadlock);

» Command: checkprop(Peterson,NoStarvation);

Model checking

» The Edinburgh Concurrency Workbench

>

>

A tool for simulating and verifying CCS agents
http://homepages.inf.ed.ac.uk/perdita/cwb/

» Proving Peterson’s solution correct
» Command: checkprop(Peterson,Mutex);

vV vy vy VvYyy

true

Command: checkprop(Peterson,NoDeadlock);
true

Command: checkprop(Peterson,NoStarvation);
true

In Reality ...

Modelling and model checking large (and infinite state) systems

» Circuits: since Pentium-bug Intel uses model checking

In Reality ...

Modelling and model checking large (and infinite state) systems

» Circuits: since Pentium-bug Intel uses model checking

» Software: Microsoft prototype software model checking

In Reality ...

Modelling and model checking large (and infinite state) systems

» Circuits: since Pentium-bug Intel uses model checking

» Software: Microsoft prototype software model checking

>

In Reality ...

Modelling and model checking large (and infinite state) systems
» Circuits: since Pentium-bug Intel uses model checking
» Software: Microsoft prototype software model checking
>

» Life: cells and pathways (Systems biology: huge new area)

In Reality ...

Modelling and model checking large (and infinite state) systems
» Circuits: since Pentium-bug Intel uses model checking
» Software: Microsoft prototype software model checking
>
» Life: cells and pathways (Systems biology: huge new area)

Paper on hardware verification and one on BLAST tool for
software verification on course web page

In Reality ...

Modelling and model checking large (and infinite state) systems
» Circuits: since Pentium-bug Intel uses model checking
» Software: Microsoft prototype software model checking
>
» Life: cells and pathways (Systems biology: huge new area)

Paper on hardware verification and one on BLAST tool for
software verification on course web page
Look up "model checking” in Wikipedia, Google, . ..

