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Modelling: a notation for describing concurrent systems (CCS)
Equivalence: when two descriptions are the same system
Properties: modal and temporal properties of systems.

Model checking: algorithmic techniques for checking
equivalence and properties.

Software tools: automatically checks properties and
equivalence



An Example: Mutual Exclusion

Mutua Exclusion
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Specification: Temporal Properties

» Mutual exclusion
» Absence of deadlock

» Absence of starvation



CCS model of Peterson’s solution

B1f = blrf.B1f 4+ blwf.B1f + blwt.Blt
Blt = blrt.Blt + blwt.B1t + blwf.B1f
B2f = b2rf.B2f + b2wf.B2f + b2wt.B2t
B2t = b2rt.B2t + b2wt.B2t + b2wf.B2f
Kl = krl.KL + kwl.K1 + kw2.K2
K2 = kr2.K2 + kw2.K2 + kwl.K1
P1 = blwt.reql. kw2.P11
P11 = b2rt.P11 + b2rf.P12 + kr2.P11 +
krl.P12
P12 = enterl.exitl.blwf.P1
P2 = b2wt.req2.kwl.P21
P21 = blrf.P22 + blrt.P21 + krl.P21 +
kr2.P22
P22 = enter2.exit2.b2wf.P2

Peterson = (P1| P2 | K1 | B1f | B2f) \L



Formalising Temporal Properties

Mutex = AG ([exitl]ff V [exit2] ff)
NoDeadlock = AG (—) tt
NoStarvation = AG([reql] AF (exitl) tt) A

AG([req2] AF (exit2) tt)
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Model checking

» The Edinburgh Concurrency Workbench

>

>

A tool for simulating and verifying CCS agents
http://homepages.inf.ed.ac.uk/perdita/cwb/

» Proving Peterson’s solution correct
» Command: checkprop(Peterson,Mutex);
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true

Command: checkprop(Peterson,NoDeadlock);
true

Command: checkprop(Peterson,NoStarvation);
true
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In Reality ...

Modelling and model checking large (and infinite state) systems
» Circuits: since Pentium-bug Intel uses model checking
» Software: Microsoft prototype software model checking
>
» Life: cells and pathways (Systems biology: huge new area)

Paper on hardware verification and one on BLAST tool for
software verification on course web page
Look up "model checking” in Wikipedia, Google, . ..



