
Modeling Adult Visual Function

Dr. James A. Bednar

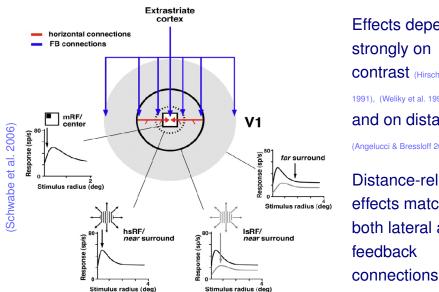
jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar

Surround modulation

Apparent contrast reduces

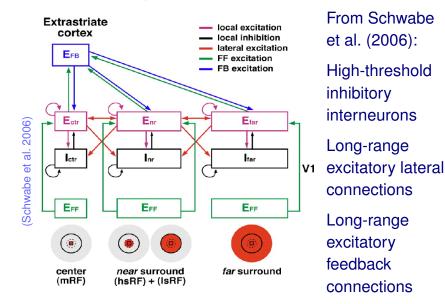
Detection facilitated or inhibited

Contour pops out

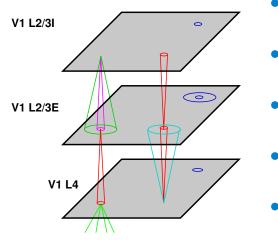

Many types of contextual interactions are known

CNV Spring 2014: Modeling adult function

2003)


Series et al.

Surround modulation

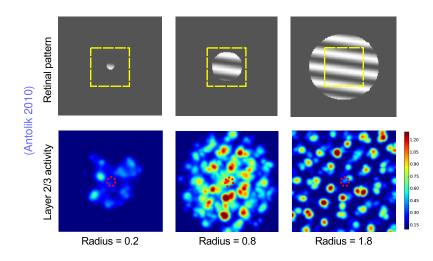

Effects depend strongly on contrast (Hirsch & Gilbert 1991), (Weliky et al. 1995) and on distance (Angelucci & Bressloff 2006) Distance-related effects match both lateral and feedback

Proposed model circuit

CNV Spring 2014: Modeling adult function

GCAL SM model

(Antolik 2010; Antolik & Bednar 2014)


CNV Spring 2014: Modeling adult function

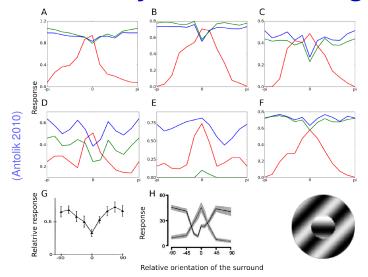
- GCAL circuit for surround modulation
- Separate inhibitory interneurons
- Long-range excitatory lateral connections
- Separate simple and complex cell layers
- No feedback connections yet; details in progress (Philipp Rudiger)

5

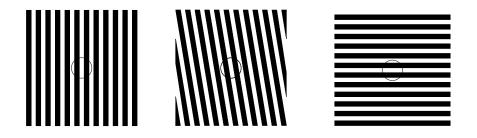
7

SM model size tuning

Single-unit response to larger patterns typically increases, then decreases as inhibition is recruited

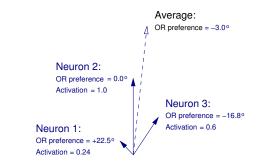

CNV Spring 2014: Modeling adult function

Diversity in size tuning


Model matches both typical and unusual size tuning responses

Diversity in OCTC tuning

Model matches both typical and unusual orientation-contrast tuning types


The Tilt Aftereffect (TAE)

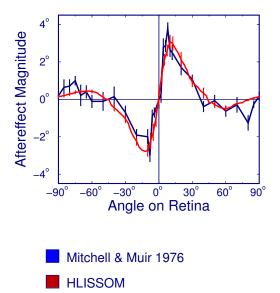
- Bias in orientation perception after prolonged exposure
- Allows model structure to be related to adult function
- Classic explanation: "fatigue" activated neurons get tired, shifting the population average away

CNV Spring 2014: Modeling adult function

Measuring perceived orientation

- Assumption: perception based on population average
- Vector average good for cyclic guantities
- Use average to decode perception, before and after adaptation

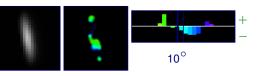
CNV Spring 2014: Modeling adult function


Direct

Indirect

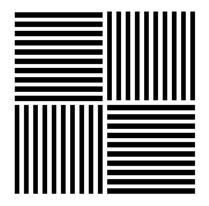
Input


pattern


TAE in Humans and LISSOM

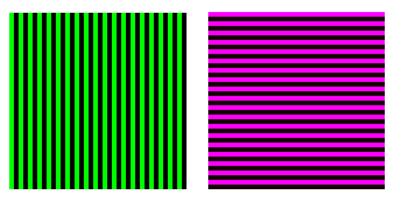
- Direct effect for small angles
- Indirect effect for larger angles
- Null effect at training angle
- Human, model match closely

TAE Adaptation in LISSOM -----



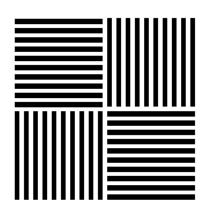
- 60°
- V1 Activity CNV Spring 2014: Modeling adult function
- Histogram difference

- Null at zero: More inhibition, but no net change in perception
- Direct effect: More inhibition for angles $< 10^{\circ}$
 - Perception shifts from 10 to 14°
- Indirect effect: Less inhibition for angles $<60^{\circ}$
 - Perception shifts from 60 to 58°
- Due to synapses, not tired neurons!


9

McCollough effect test pattern

Before adaptation, this pattern should appear monochrome


Adaptation pattern

Stare alternately at the two patterns for 3 minutes, moving your gaze to avoid developing strong afterimages CNV Spring 2014: Modeling adult function

CNV Spring 2014: Modeling adult function

McCollough effect

(McCollough 1965)

After adaptation:

- Vertical bars should be slightly magenta
- Horizontal bars should be slightly green

• The effect should reverse if you tilt your head 90° , and disappear if you tilt 45° .

Land

15

∆P_e

ccw 40 30

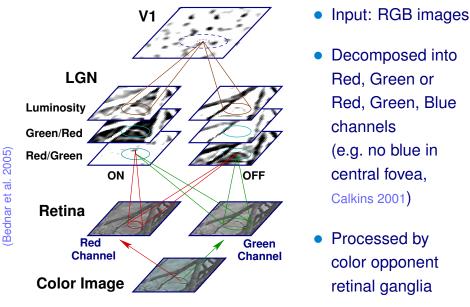
Ellis 1977)

Ts'o 2002)

ø

sman

13

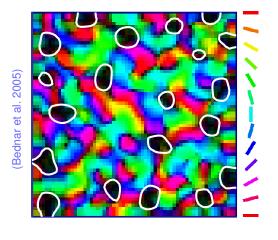

2.3×5.3mm macaque V1 CNV Spring 2014: Modeling adult function

McCollough effect: data

- Effect measured in humans at each angle between adaptation and test
 Strength falls off smoothly with angle
 - V1 is earliest possible substrate

 first area showing
 OR selectivity; has
 color map

LISSOM RG Color V1 Model



Decomposed into Red, Green or Red, Green, Blue channels (e.g. no blue in

Calkins 2001)

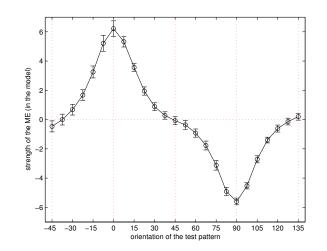
Processed by color opponent retinal ganglia

LISSOM OR + Color map

- Orientation map similar to animal maps
- Color-selective cells occur in blobs
- Needs study of preferences of neurons in each blob

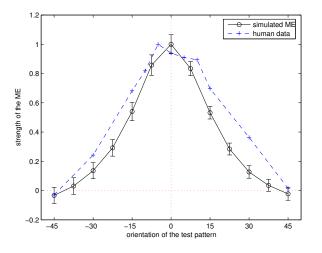
CNV Spring 2014: Modeling adult function

17

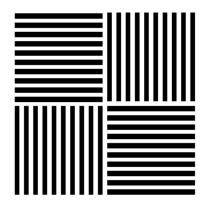

19

Calculating McCollough Effect

- Perceived color estimated as a vector average of all units
- Vector direction: + for red-selective units, for green-selective units
- Weighted by activation level and amount of color selectivity


Result is a number from extreme red (positive) to extreme green (negative), with approximately 0 being monochrome.

Model McCollough Effect



CNV Spring 2014: Modeling adult function

Compared with humans

McCollough Effect

Is the effect still present?

Summary

- GCAL can be compatible with actual circuit
- Reproduces surprising features of surround modulation
- Afterffects arise from Hebbian adaptation of lateral connections
- The same self-organizing processes can drive both development and adaptation: both structure and function
- Novel prediction: Indirect effect due to weight normalization
- Project: details of wiring for inverted Mexican Hat
 CNV Spring 2014: Modeling adult function

References

21

23

- Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extraclassical receptive field surround of primate V1 neurons. *Progress in Brain Research*, 154, 93–120.
- Antolik, J. (2010). Unified Developmental Model of Maps, Complex Cells and Surround Modulation in the Primary Visual Cortex. Doctoral Dissertation, School of Informatics, The University of Edinburgh, UK.
- Antolik, J., & Bednar, J. A. (2014). A unified developmental model of maps, complex cells and surround modulation in the primary visual cortex. In preparation.

CNV Spring 2014: Modeling adult function

Bednar, J. A., De Paula, J. B., & Miikkulainen, R. (2005). Self-organization of
color opponent receptive fields and laterally connected orientation maps.
<i>Neurocomputing</i> , <i>65–66</i> , 69–76.

- Calkins, D. J. (2001). Seeing with S cones. *Progress in Retinal and Eye Research*, *20* (3), 255–287.
- Ellis, S. R. (1977). Orientation selectivity of the McCollough effect: Analysis by equivalent contrast transformation. *Perception and Psychophysics*, *22* (6), 539–544.
- Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat's visual cortex. *The Journal of Neuroscience*, *11*, 1800–1809.
- Landisman, C. E., & Ts'o, D. Y. (2002). Color processing in macaque striate cortex:

Relationships to ocular dominance, cytochrome oxidase, and orientation. *Journal of Neurophysiology*, *87* (6), 3126–3137.

- McCollough, C. (1965). Color adaptation of edge-detectors in the human visual system. *Science*, *149* (3688), 1115–1116.
- Mitchell, D. E., & Muir, D. W. (1976). Does the tilt aftereffect occur in the oblique meridian?. *Vision Research*, *16*, 609–613.
- Schwabe, L., Obermayer, K., Angelucci, A., & Bressloff, P. C. (2006). The role of feedback in shaping the extra-classical receptive field of cortical neurons: A recurrent network model. *The Journal of Neuroscience*, *26* (36), 9117–9129.

Series, P., Lorenceau, J., & Fregnac, Y. (2003). The "silent" surround of V1 recep-

CNV Spring 2014: Modeling adult function	23	CNV Spring 2014: Modeling adult function	23
 CNV Spring 2014: Modeling adult function tive fields: Theory and experiments. Journal of Physiology (Paris), 97 (6), 453–474. Weliky, M., Kandler, K., Fitzpatrick, D., & Katz, L. C. (1995). Patterns of excitati and inhibition evoked by horizontal connections in visual cortex share common relationship to orientation columns. Neuron, 15, 541–552. 	4– on	CNV Spring 2014: Modeling adult function	23