Modeling Adult Visual Function

Dr. James A. Bednar

jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar

Surround modulation

Apparent contrastDetection facilitated orContour pops outreducesinhibited

Many types of contextual interactions are known

Surround modulation

contrast (Hirsch & Gilbert 1991), (Weliky et al. 1995) and on distance (Angelucci & Bressloff 2006) **Distance-related** effects match both lateral and feedback connections

Proposed model circuit

From Schwabe et al. (2006): **High-threshold** inhibitory interneurons Long-range excitatory lateral connections Long-range excitatory feedback connections

GCAL SM model

(Antolik 2010; Antolik & Bednar 2014)

- GCAL circuit for surround modulation
- Separate inhibitory interneurons
- Long-range excitatory lateral connections
- Separate simple and complex cell layers
- No feedback connections yet; details in progress (Philipp Rudiger)

SM model size tuning

Single-unit response to larger patterns typically increases, then decreases as inhibition is recruited

Diversity in size tuning

Model matches both typical and unusual size tuning responses

Diversity in OCTC tuning

Relative orientation of the surround

Model matches both typical and unusual orientation-contrast tuning types

The Tilt Aftereffect (TAE)

- Bias in orientation perception after prolonged exposure
- Allows model structure to be related to adult function
- Classic explanation: "fatigue" activated neurons get tired, shifting the population average away

Measuring perceived orientation

- Assumption: perception based on population average
- Vector average good for cyclic quantities
- Use average to decode perception, before and after adaptation

TAE in Humans and LISSOM

- Direct effect for small angles
- Indirect effect for larger angles
- Null effect at training angle
- Human, model match closely

TAE Adaptation in LISSOM

- Null at zero: More inhibition, but no net change in perception
- Direct effect: More inhibition for angles $<10^{\circ}$
 - Perception shifts from 10 to 14°
- Indirect effect: Less inhibition for angles <60°
 - Perception shifts from 60 to 58°
- Due to synapses, not tired neurons!

McCollough effect test pattern

Before adaptation, this pattern should appear monochrome

Adaptation pattern

Stare alternately at the two patterns for 3 minutes, moving your gaze to avoid developing strong afterimages

McCollough effect

(McCollough 1965)

After adaptation:

- Vertical bars should be slightly magenta
- Horizontal bars should be slightly green
- The effect should reverse if you tilt your head 90° , and disappear if you tilt 45° .

McCollough effect: data

 Effect measured in humans at each angle between adaptation and test

- Strength falls off smoothly with angle
- V1 is earliest
 possible substrate
 first area showing
 OR selectivity; has
 color map

-andisman & Ts'o 2002)

2.3×5.3mm macaque V1

LISSOM RG Color V1 Model

- Input: RGB images
- Decomposed into Red, Green or Red, Green, Blue channels (e.g. no blue in central fovea, Calkins 2001)
- Processed by color opponent retinal ganglia

LISSOM OR + Color map

- Orientation map similar to animal maps
- Color-selective cells occur in blobs
- Needs study of preferences of neurons in each blob

CNV Spring 2014: Modeling adult function

Calculating McCollough Effect

- Perceived color estimated as a vector average of all units
- Vector direction: + for red-selective units, for green-selective units
- Weighted by activation level and amount of color selectivity

Result is a number from extreme red (positive) to extreme green (negative), with approximately 0 being monochrome.

Model McCollough Effect

Compared with humans

Summary

- GCAL can be compatible with actual circuit
- Reproduces surprising features of surround modulation
- Afterffects arise from Hebbian adaptation of lateral connections
- The same self-organizing processes can drive both development and adaptation: both structure and function
- Novel prediction: Indirect effect due to weight normalization
- Project: details of wiring for inverted Mexican Hat

McCollough Effect

Is the effect still present?

References

Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extraclassical receptive field surround of primate V1 neurons. *Progress in Brain Research*, *154*, 93–120.

Antolik, J. (2010). Unified Developmental Model of Maps, Complex Cells and Surround Modulation in the Primary Visual Cortex. Doctoral Dissertation, School of Informatics, The University of Edinburgh, UK.

Antolik, J., & Bednar, J. A. (2014). A unified developmental model of maps, complex cells and surround modulation in the primary visual cortex. In preparation. Bednar, J. A., De Paula, J. B., & Miikkulainen, R. (2005). Self-organization of color opponent receptive fields and laterally connected orientation maps. *Neurocomputing*, *65–66*, 69–76.

Calkins, D. J. (2001). Seeing with S cones. *Progress in Retinal and Eye Research*, *20* (3), 255–287.

Ellis, S. R. (1977). Orientation selectivity of the McCollough effect: Analysis by equivalent contrast transformation. *Perception and Psychophysics*, *22* (6), 539–544.

Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat's visual cortex. *The Journal of Neuroscience*, *11*, 1800–1809.

Landisman, C. E., & Ts'o, D. Y. (2002). Color processing in macaque striate cortex:

Relationships to ocular dominance, cytochrome oxidase, and orientation. *Journal of Neurophysiology*, *87* (6), 3126–3137.

McCollough, C. (1965). Color adaptation of edge-detectors in the human visual system. *Science*, *149* (3688), 1115–1116.

Mitchell, D. E., & Muir, D. W. (1976). Does the tilt aftereffect occur in the oblique meridian?. *Vision Research*, *16*, 609–613.

Schwabe, L., Obermayer, K., Angelucci, A., & Bressloff, P. C. (2006). The role of feedback in shaping the extra-classical receptive field of cortical neurons:
A recurrent network model. *The Journal of Neuroscience*, *26* (36), 9117–9129.

Series, P., Lorenceau, J., & Fregnac, Y. (2003). The "silent" surround of V1 recep-

tive fields: Theory and experiments. *Journal of Physiology (Paris)*, *97* (4–6), 453–474.

Weliky, M., Kandler, K., Fitzpatrick, D., & Katz, L. C. (1995). Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. *Neuron*, *15*, 541–552.