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Problems with SOMs
A Kohonen SOM is very limited as a model of cortical function:

• Picking one winner requires a global supervisor, valid
only for a tiny patch with very strong lateral inhibition.

• Full connectivity is possible only for tiny cortical networks.

• Lateral interactions are forced to be isotropic, contrary
to biological evidence.

• There is no evidence for lateral radius shrinking; in
fact the opposite appears to be true: initially diffuse,
becoming patchier and longer-range

• The Euclidean distance metric is not clearly relatable
to neural firing or synaptic plasticity.
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Problems with SOM retinotopy
The particular model of SOM retinotopy we’ve been
looking at also has other problems:

• There is no known state when the connections from
the eye are evenly distributed across a target region;
even the initial connections are roughly retinotopic.

• The overall retinotopy is established by axons
following gradients of signaling molecules such as
Ephrins, though activity may have some role in this
process (reviewed in Flanagan 2006; Huberman et al. 2008).

In any case, activity appears to be required for map
refinement, and it’s interesting that in principle an
unfolding process like in the SOM simulation could work.
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LISSOM
The LISSOM model (Sirosh & Miikkulainen 1994) was

designed to remove some of the artificial limitations and

biologically unrealistic features of a SOM:

• Local recurrent lateral interactions, instead of global winner

• Specific lateral connections, instead of isotropic neighborhood

• Spatially localized CFs, instead of full connectivity

• Activation by sigmoided dot product, rather than

Euclidean distance

• Learning by simpler Hebbian rule
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GCAL
In turn, GCAL (Bednar 2012; Stevens et al. 2013) was
designed to remove some of the artificial limitations and
biologically unrealistic features of LISSOM:

• Automatic homeostatic plasticity, instead of
hand-adjusted thresholds

• No lateral connection radius shrinking or arbitrary
changes to learning rates or settling steps over time

• Gain control for realistic behavior with contrast (similar
to the afferent normalization of CMVC section 8.2.3)

GCAL is otherwise like LISSOM. The CMVC book and
older work all focus on LISSOM, but current work uses
GCAL; for this course the distinction is not important.
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HLISSOM Architecture
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HLISSOM Architecture
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Neuron activation function σ(s)
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• LISSOM: Easy-to-compute piecewise-linear sigmoid

Strongly sensitive to thresholds θl and θu

• GCAL: No θu (approximates s2)

θl set automatically to achieve target average firing rate
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DoG RGC/LGN RFs
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• Fixed Difference of Gaussians

• Center/surround size ratio based on experimental data

• Precisely balanced center/surround strength ratio

(not quite realistic)
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Initial V1 weights
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• Initial rough topographic organization

• Explicit lateral connections

• LISSOM: Initially larger lateral excitatory radius
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Self-organized V1 afferent weights
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Given isotropic Gaussians, learns isotropic Gaussians

CNV Spring 2014: LISSOM model 12



Self-organized V1 lateral weights
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• Learns isotropic (Mexican-hat) lateral interactions

• Reflects the flatness of learned map (no folding)
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Self-organized afferent and lateral
weights across V1
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Self-organization of the
retinotopic map
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Retinotopy input and response
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• Settling process: Sharpens activity around strongly

activated patches

• Multiple winners occur for multiple or large input

features
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Summary
LISSOM/GCAL: same basic process as a SOM, but:

• More plausible

• More powerful:

– Multiple winners

– Specific lateral connections

• More computation and memory intensive

• LISSOM: Unfortunately, very sensitive to parameters

• GCAL: Still robust, now due to local gain control and

homeostasis, rather than global winner picking
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