Early Vision and Visual System Development

Dr. James A. Bednar

jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar

CNV Spring 2011: Vision background

Studying the visual system (2)

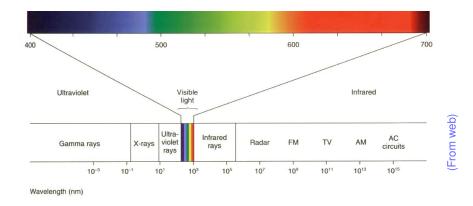
Physiology What is the behavior of the component parts of the visual system?

Electrophysiology What is the electrical behavior of neurons, measured with an electrode?

Imaging What is the behavior of a large area of the nervous system?

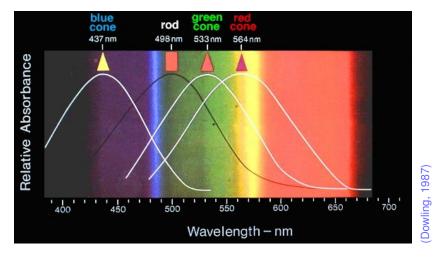
Genetics Which genes control visual system development and function, and what do they do?

Studying the visual system (1)

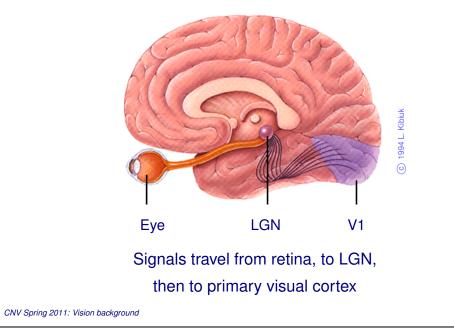

The visual system can be (and is) studied using many different techniques. In this course we will consider:

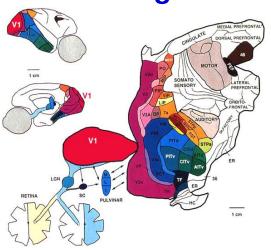
- **Psychophysics** What is the level of human visual performance under various different conditions?
- **Anatomy** Where are the visual system parts located, and what do they look like?
 - **Gross anatomy** What do the visual system organs and tissues look like, and how are they connected?
 - Histology What cellular and subcellular structures

can be seen under a microscope?


CNV Spring 2011: Vision background

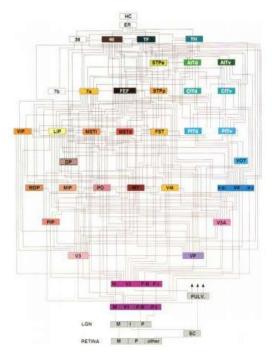
Electromagnetic spectrum


Start with the physics: visible portion is small, but provides much information about biologically relevant stimuli


Cone spectral sensitivities

Somehow we make do with sampling the visible range of wavelengths at only three points (3 cone types) CNV Spring 2011: Vision background

Early visual pathways


Macaque visual areas (Van Essen et al. 1992)

Higher areas

• Many higher areas beyond

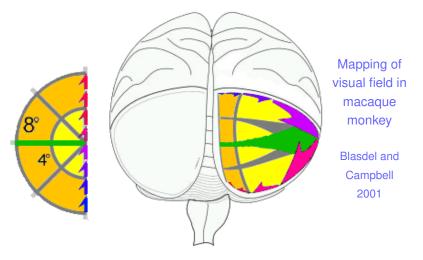
V1

- Selective for faces, motion,
- etc.
- Not as well understood

Circuit diagram

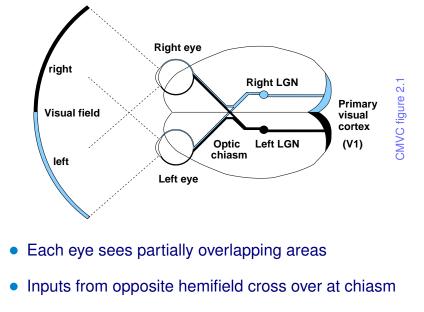
Connections between macaque visual areas

(Van Essen et al. 1992)


A bit messy!

(Yet still just a start.)

5


	Image formation							
				(1991)				
	B Pupil Lens Pupinet Retina Popinet Choroid							
		Fixed	Adjustable	Sampling				
-	Camera:	lens shape	focal length	uniform				
	Eye:	focal length	lens shape	higher at fovea				
/ Spring 2011: Vision background								

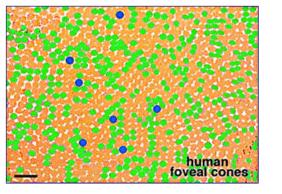
Retinotopic map

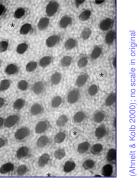
- Visual field is mapped onto cortical surface
- Fovea is overrepresented

Visual fields

CNV Spring 2011: Vision background

Effect of foveation

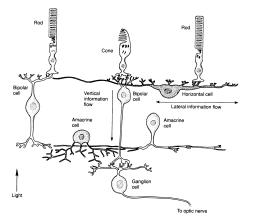



10

Smaller, tightly packed cones in the fovea give much higher resolution

CNV

Retinal surface

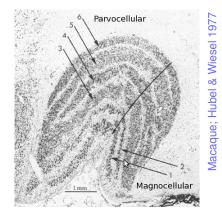

Fovea (center \rightarrow)

Periphery

- Fovea: densely packed L,M cones (no rods)
- No S cones in central fovea; sparse elsewhere
- Cones are larger in periphery (*: S-cones)
- Cone spacing also increases, with gaps filled by rods

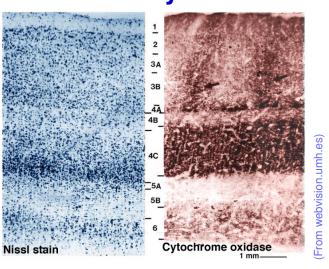
13

Retinal circuits

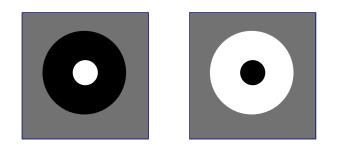

(Kandel et al. 1991)

Rod pathway Rod, rod bipolar cell, ganglion cell

Cone pathway Cone, bipolar cell, ganglion cell

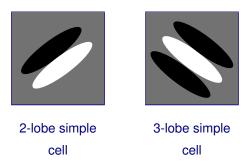

CNV Spring 2011: Vision background

LGN layers


Multiple aligned representations of visual field in the LGN for different eyes and cell types

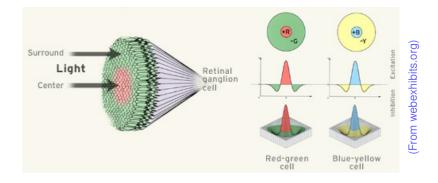
V1 layers

Multiple layers of cells in V1 Brodmann numbering 14

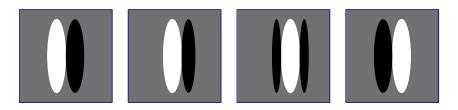

Retinal/LGN cell response types

Types of receptive fields based on responses to light:

	in center	in surround	
On-center	excited	inhibited	
Off-center	inhibited	excited	
CNV Spring 2011: Vision background			


V1 simple cell responses

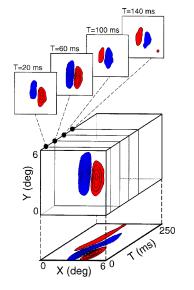
Starting in V1, only oriented patterns will cause any significant response


Simple cells: pattern preferences can be plotted as above

Color-opponent retinal/LGN cells

Red/Green cells: (+R,-G), (-R,+G), (+G,-R), (-G,+R) Blue/Yellow cells: (+B,-Y); others? Error: light arrows in the figure are backwards! Organization generally consistent with random wiring

V1 complex cell responses

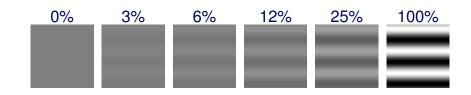

(Same response to all these patterns)

Complex cells are also orientation selective, but have responses invariant to phase

Can't measure complex RFs using pixel-based correlations

17

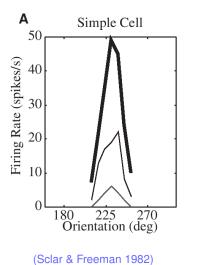
Spatiotemporal receptive fields



- Neurons are selective for multiple stimulus dimensions at once
- Typically prefer lines moving in direction perpendicular to orientation preference

(Cat V1; DeAngelis et al. 1999)

CNV Spring 2011: Vision background


Contrast perception

- Humans can detect patterns over a huge contrast range
- In the laboratory, increasing contrast above a fairly low value does not aid detection
- See 2AFC (two-alternative forced-choice) test in google and ROC (Receiver Operating Characteristic) in Wikipedia for more info on how such tests work

CNV Spring 2011: Vision background

Contrast-invariant tuning

• Single-cell tuning curves are typically Gaussian

- 5%, 20%, 80% contrasts shown
- Peak response increases, but
- Tuning width changes little
- Contrast where peak is reached varies by cell

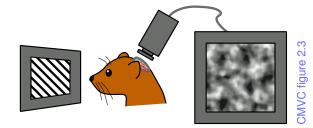
Definitions of contrast

Luminance (luminosity): Physical amount of light

Contrast: Luminance relative to background levels to which the visual system has become adapted

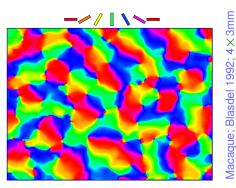
Contrast is a fuzzy concept - clear only in special cases:

Weber contrast (e.g. a tiny spot on uniform background)

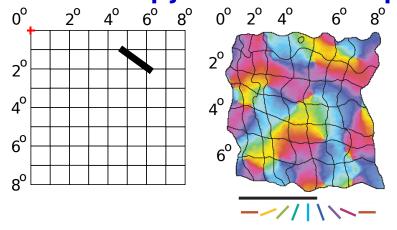

$$C = \frac{Lmax - Lmin}{Lmin}$$

Michelson contrast (e.g. a full-field sine grating):

$$C = \frac{Lmax - Lmin}{Lmax + Lmin} = \frac{\frac{Lmax - Lmin}{2}}{Lavg}$$


21

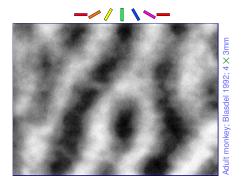
Measuring cortical maps


- Surface reflectance (or voltage-sensitive-dye emission) changes with activity
- Measured with optical imaging
- Preferences computed as correlation between measurement and input

Macaque orientation map

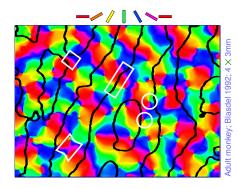
- Macaque monkey has fovea but similar orientation map
- Retinotopic map (not measured) highly nonlinear

Retinotopy/orientation map


- Tree shrew has no fovea \rightsquigarrow isotropic map
- All orientations represented for each retina location
- Orientation map is smooth, with local patches

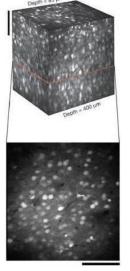
CNV Spring 2011: Vision background

25


27

Ocular dominance map in V1

- Most neurons are binocular, but prefer one eye
- Eye preference alternates in stripes or patches


Combined OR/OD map in V1

- Same neurons have preference for both features
- OR has linear zones, fractures, pinwheels, saddles
- OD boundaries typically align with linear zones

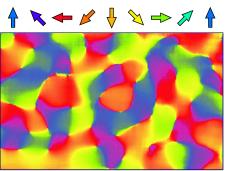
CNV Spring 2011: Vision background

Cell-level organization

Two-photon microscopy:

- New technique with cell-level resolution
- Can measure a small volume very precisely

(Ohki et al. 2005)


Rat V1 (scale bars 0.1mm)

Rat V1 (scale bars 0.1mm)

31

CNV Spring 2011: Vision background

Direction map in V1

Direction preference

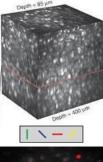
1</t

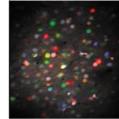
(Adult ferret; Weliky et al.

30

(3.2×2mm)

(1×1.4mm)

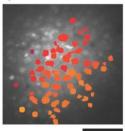

- Local patches prefer different directions
- Single-OR patches often subdivided by direction

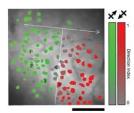

Cell-level organization 2

• Other maps: spatial frequency, color, disparity

CNV Spring 2011: Vision background

29



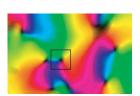

- Individual cells can be tagged with feature preference
- In rat, orientation preferences are random
- Random also expected in mouse, squirrel

(Ohki et al. 2005)

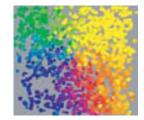
Cell-level organization 3

+×+×+×+

Cat V1 Dir. (scale bars 0.1mm) CNV Spring 2011: Vision background


- In cat, validates results from optical imaging
- Smooth organization for direction overall
- Sharp, well-segregated discontinuities

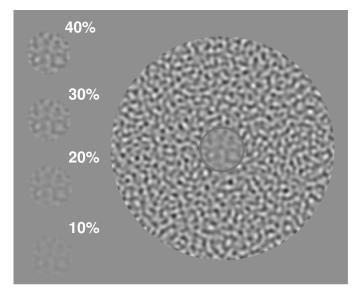
(Ohki et al. 2005)


33

35

Cell-level organization 4

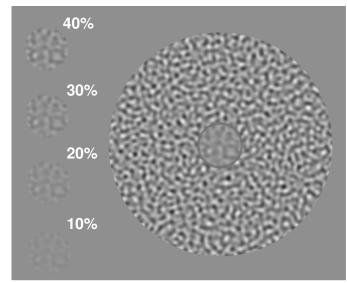
Low-res map (2×1.2mm)


Stack of all labeled cells (0.6×0.4mm)

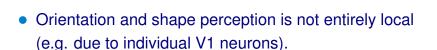
CNV Spring 2011: Vision background

- Very close match with optical imaging results
- Stacking labeled cells from all layers shows very strong ordering spatially and in across layers
- Selectivity in pinwheels controversial; apparently lower

(Ohki et al. 2006)


Surround modulation

Which of the contrasts at left matches the central area?


CNV Spring 2011: Vision background

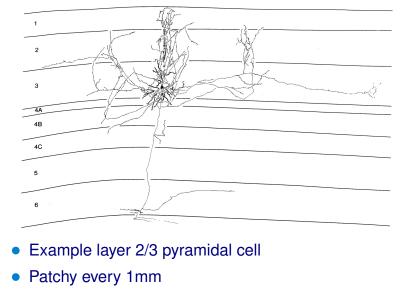
Surround modulation

Which of the contrasts at left matches the central area? **40%**

Contextual interactions

- Instead, adjacent line elements interact (tilt illusion).
- Presumably due to lateral or feedback connections at V1 or above.

Lateral connections

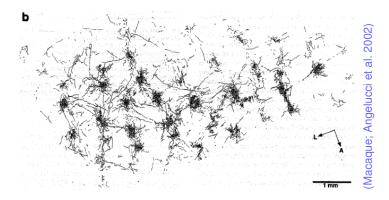

(2.5 mm \times 2 mm in tree shrew V1; Bosking et al. 1997)

- Connections up to 8mm link to similar preferences
- Patchy structure, extend along OR preference

37

39

Lateral connections



CNV Spring 2011: Vision background

38

Macaque; Gilbert et al.

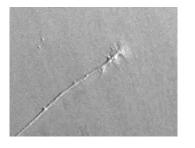
Feedback connections

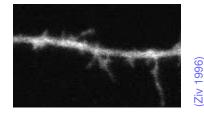
- Relatively little known about feedback connections
- Large number, wide spread
- Some appear to be diffuse
- Some are patchy and orientation-specific

Visual development

Research questions:

- Where does the visual system structure come from?
- How much of the architecture is specific to vision?
- What influence does the environment have?
- How plastic is the system in the adult?


Most visual development studies focus on ferrets and cats, whose visual systems are very immature at birth.


CNV Spring 2011: Vision background

Cortical development

- Coarse cortical architecture (e.g. division into areas) appears to be fixed after birth
- Cortical architecture similar across areas
- Much of cortical development appears driven by different peripheral circuitry (auditory, visual, etc.)
- E.g. Sur et al. 1988-2000: auditory cortex can develop into visual cortex

Initial development

42

- Tissues develop into eye, brain
- RGC axons grow from eye to LGN and superior colliculus (SC) following chemical gradients
- Axons form synapses at LGN, SC
- LGN axons grow to V1, V2, etc., forming synapses

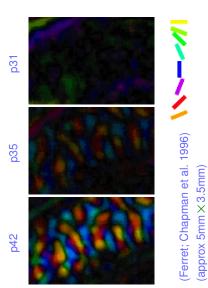
Rewired ferrets

Rewired A

0.6 0.8

CNV Spring 2011: Vision background

Sur et al. 1988-2000: Orientation selectivity index


- 1. Disrupt
 - connections
- to MGN
- 2. RGC axons now terminate
- in MGN
- 3. Then to A1 instead of V1
- 4. \rightarrow Functional orientation cells. map in A1

Human visual system at birth

- Some visual ability
- Fovea barely there
- Color vision poor
- Binocular vision difficult
 - Poor control of eye movements
 - Seems to develop later
- Acuity increases 25X (birth to 6 months)

CNV Spring 2011: Vision background

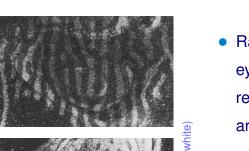
OR map development

- Map not visible when eyes first forced open
- Gradually becomes stronger over weeks
- Shape doesn't change significantly
- Initial development affected little by dark rearing

Map development

- Initial orientation, OD maps develop without visual experience (Crair et al. 1998)
- Maps match between the eyes even without shared visual experience (Kim & Bonhoeffer 1994)
- Experience leads to more selective neurons and maps (Crair et al. 1998)
- Lid suture (leaving light through eyelids) during critical period destroys maps (White et al. 2001)
- \rightsquigarrow Complicated interaction between system and environment.

Monocular deprivation


CNV Spring 2011: Vision background

1982)

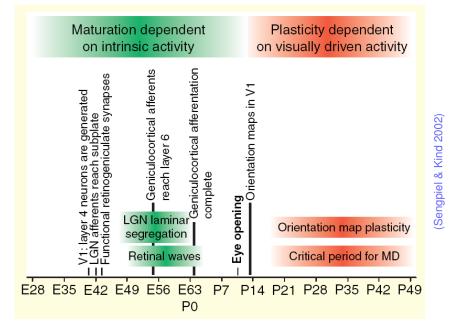
Wiesel

Monkey V1 layer 4C;

CNV Spring 2011: Vision background

- Raising with one eyelid sutured shut results in larger area for other eye
- Sengpiel et al. 1999: Area for overrepresented orientations increases too

47

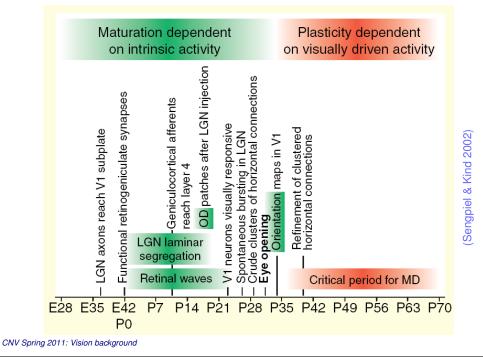

45

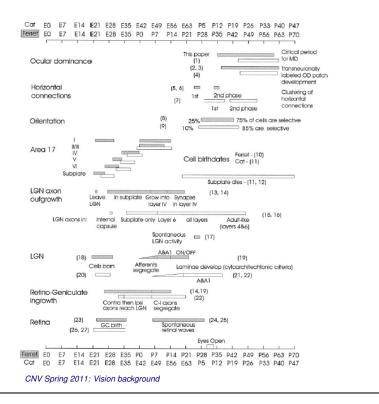
Internally generated inputs ferret retina 2 1 mm 0.0s 1.0s 2.0s 3.0s 4.0s et al. 1996, Feller 0.0s 0.5s 1.0s 1.5s 2.0s

- Retinal waves: drifting patches of spontaneous activity
- Training patterns?

CNV Spring 2011: Vision background

Timeline: Cat

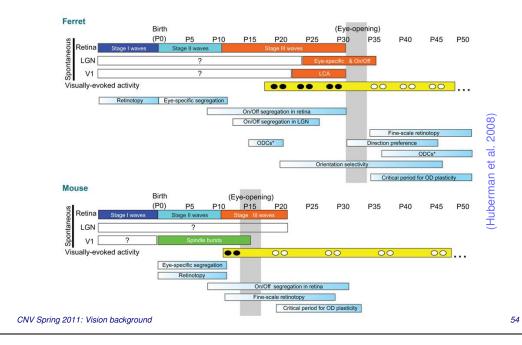



Role of spontaneous activity

- Silencing of retinal waves prevents eye-specific segregation in LGN (Huberman et al. 2003) and ocular dominance columns in V1 (Huberman et al. 2006)
- Boosting in one eye disrupts LGN, but not if in both
- Disrupting retinal waves disrupts geniculocortical mapping (Cang et al. 2005)
- Other sources of input to V1: spontaneous cortical activity, brainstem activity
- All developing areas seem to be spontaneously active, e.g. auditory system, spinal cord

CNV Spring 2011: Vision background

Timeline: Ferret



Conclusions

- Early areas well studied
- Higher areas much less so
- Little understanding of how entire system works together
- Development also a mystery
- Lots of work to do

Ferret vs. mouse

References

- Ahnelt, P. K., & Kolb, H. (2000). The mammalian photoreceptor mosaic—adaptive design. *Progress in Retinal and Eye Research*, *19* (6), 711–777.
- Angelucci, A., Levitt, J. B., & Lund, J. S. (2002). Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. *Progress in Brain Research*, *136*, 373–388.
- Bosking, W. H., Crowley, J. C., & Fitzpatrick, D. (2002). Spatial coding of position and orientation in primary visual cortex. *Nature Neuroscience*, *5* (9), 874– 882.
- Bosking, W. H., Zhang, Y., Schofield, B. R., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. *The Journal of Neuroscience*, *17* (6), 2112–2127.

CNV Spring 2011: Vision background

53

Cat vs.

ferret

Should be

readable in a

printout, not

on screen

OD. Ocular dominance

GC, ganglion cell

MD, monocular deprivation

C-I, contralateral-ipsilateral

(Issa et al. 1999)

 Cang, J., Renteria, R. C., Kaneko, M., Liu, X., Copenhagen, D. R., & Stryker, M. P. (2005). Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. <i>Neuron, 48</i> (5), 797–809. Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. <i>The Journal of Neuroscience, 16</i> (20), 6443–6453. Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. <i>Science, 279</i>, 566–570. DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive field analysis 	 Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. <i>Science</i>, <i>272</i>, 1182–1187. Gilbert, C. D., Hirsch, J. A., & Wiesel, T. N. (1990). Lateral interactions in visual cortex. In <i>The Brain</i> (Vol. LV of <i>Cold Spring Harbor Symposia on Quantitative Biology</i>, pp. 663–677). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque visual cortex. <i>Proceedings of the Royal Society of London Series B</i>, <i>198</i>, 1–59. Huberman, A. D., Feller, M. B., & Chapman, B. (2008). Mechanisms underlying development of visual maps and receptive fields. <i>Annual Review of Neuro-</i> 	
of nearby neurons. <i>The Journal of Neuroscience</i> , 19 (10), 4046–4064.	science, 31, 479-509.	
Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., & Shatz, C. J. (1996).	Huberman, A. D., Speer, C. M., & Chapman, B. (2006). Spontaneous retinal	
CNV Spring 2011: Vision background 55 activity mediates development of ocular dominance columns and binocular	CNV Spring 2011: Vision background 55 tion of orientation preference maps in visual cortex. <i>Nature</i> , <i>370</i> (6488),	
receptive fields in V1. <i>Neuron</i> , <i>52</i> (2), 247–254.	370–372.	
Huberman, A. D., Wang, G. Y., Liets, L. C., Collins, O. A., Chapman, B., &	Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P., & Reid, R. C. (2005). Functional	
Chalupa, L. M. (2003). Eye-specific retinogeniculate segregation indepen-	imaging with cellular resolution reveals precise micro-architecture in visual	
dent of normal neuronal activity. <i>Science</i> , <i>300</i> (5621), 994–998.	cortex. <i>Nature</i> , <i>433</i> (7026), 597–603.	
Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R., & Stryker, M. P. (1999).	Ohki, K., Chung, S., Kara, P., Hubener, M., Bonhoeffer, T., & Reid, R. C. (2006).	
The critical period for ocular dominance plasticity in the ferret's visual cor-	Highly ordered arrangement of single neurons in orientation pinwheels. <i>Na-</i>	
tex. <i>The Journal of Neuroscience</i> , <i>19</i> (16), 6965–6978.	<i>ture</i> , <i>442</i> (7105), 925–928.	
 Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (1991). <i>Principles of Neural Science</i> (3rd Ed.). Amsterdam: Elsevier. Kim, D. S., & Bonhoeffer, T. (1994). Reverse occlusion leads to a precise restora- 	Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. <i>Experimental Brain Research</i> , 46, 457– 461.	

CNV Spring 2011: Vision background

- Sengpiel, F., & Kind, P. C. (2002). The role of activity in development of the visual system. *Current Biology*, *12* (23), R818–R826.
- Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. *Nature Neuroscience*, *2* (8), 727–732.
- Sur, M., Garraghty, P. E., & Roe, A. W. (1988). Experimentally induced visual projections in auditory thalamus and cortex. *Science*, *242*, 1437–1441.
- Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: An integrated systems perspective. *Science*, *255*, 419–423.
- Weliky, M., Bosking, W. H., & Fitzpatrick, D. (1996). A systematic map of direction preference in primary visual cortex. *Nature*, *379*, 725–728.

CNV Spring 2011: Vision background

55

- White, L. E., Coppola, D. M., & Fitzpatrick, D. (2001). The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. *Nature*, *411*, 1049–1052.
- Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of the environment. *Nature*, *299*, 583–591.

CNV Spring 2011: Vision background