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Studying the visual system (1)

The visual system can be (and is) studied using many

different techniques. In this course we will consider:

Psychophysics What is the level of human visual

performance under various different conditions?

Anatomy Where are the visual system parts located, and

what do they look like?

Gross anatomy What do the visual system organs

and tissues look like, and how are they connected?

Histology What cellular and subcellular structures

can be seen under a microscope?
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Studying the visual system (2)

Physiology What is the behavior of the component parts

of the visual system?

Electrophysiology What is the electrical behavior of

neurons, measured with an electrode?

Imaging What is the behavior of a large area of the

nervous system?

Genetics Which genes control visual system

development and function, and what do they do?

CNV Spring 2011: Vision background 3

Electromagnetic spectrum

(F
ro

m
w

eb
)

Start with the physics: visible portion is small, but provides

much information about biologically relevant stimuli
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Cone spectral sensitivities
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Somehow we make do with sampling the visible range of

wavelengths at only three points (3 cone types)
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Early visual pathways
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Signals travel from retina, to LGN,

then to primary visual cortex
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Higher areas

Macaque visual areas
(Van Essen et al. 1992)

• Many higher

areas beyond

V1

• Selective for

faces, motion,

etc.

• Not as well

understood
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Circuit
diagram

Connections
between
macaque visual
areas

(Van Essen et al. 1992)

A bit messy!

(Yet still just a start.)
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Image formation
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Fixed Adjustable Sampling

Camera: lens shape focal length uniform

Eye: focal length lens shape higher at fovea
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Visual fields
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• Each eye sees partially overlapping areas

• Inputs from opposite hemifield cross over at chiasm
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Retinotopic map

Mapping of
visual field in

macaque
monkey

Blasdel and

Campbell

2001

• Visual field is mapped onto cortical surface
• Fovea is overrepresented

CNV Spring 2011: Vision background 11

Effect of foveation
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Smaller, tightly packed cones in the fovea

give much higher resolution
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Retinal surface

Fovea (center ;) Periphery
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• Fovea: densely packed L,M cones (no rods)
• No S cones in central fovea; sparse elsewhere
• Cones are larger in periphery (∗: S-cones)
• Cone spacing also increases, with gaps filled by rods
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Retinal circuits
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Rod pathway Rod, rod bipolar cell, ganglion cell

Cone pathway Cone, bipolar cell, ganglion cell
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LGN layers
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Multiple aligned representations of visual field in the LGN

for different eyes and cell types
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V1 layers
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Multiple layers of cells in V1

Brodmann numbering
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Retinal/LGN cell response types

Types of receptive fields based on responses to light:

in center in surround

On-center excited inhibited

Off-center inhibited excited
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Color-opponent retinal/LGN cells
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Red/Green cells: (+R,-G), (-R,+G), (+G,-R), (-G,+R)

Blue/Yellow cells: (+B,-Y); others?

Error: light arrows in the figure are backwards!

Organization generally consistent with random wiring
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V1 simple cell responses

2-lobe simple

cell

3-lobe simple

cell

Starting in V1, only oriented patterns will cause any

significant response

Simple cells: pattern preferences can be plotted as above
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V1 complex cell responses

(Same response to all these patterns)

Complex cells are also orientation selective, but have

responses invariant to phase

Can’t measure complex RFs using pixel-based

correlations
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Spatiotemporal receptive fields

• Neurons are selective for

multiple stimulus

dimensions at once

• Typically prefer lines moving

in direction perpendicular to

orientation preference

(Cat V1; DeAngelis et al. 1999)
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Contrast perception

0% 3% 6% 12% 25% 100%

• Humans can detect patterns over a huge contrast range

• In the laboratory, increasing contrast above a fairly low
value does not aid detection

• See 2AFC (two-alternative forced-choice) test in
google and ROC (Receiver Operating Characteristic)
in Wikipedia for more info on how such tests work
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Contrast-invariant tuning

(Sclar & Freeman 1982)

• Single-cell tuning curves

are typically Gaussian

• 5%, 20%, 80% contrasts

shown

• Peak response increases, but

• Tuning width changes little

• Contrast where peak is

reached varies by cell
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Definitions of contrast

Luminance (luminosity): Physical amount of light

Contrast: Luminance relative to background levels to

which the visual system has become adapted

Contrast is a fuzzy concept – clear only in special cases:

Weber contrast (e.g. a tiny spot on uniform background)

C = Lmax−Lmin
Lmin

Michelson contrast (e.g. a full-field sine grating):

C = Lmax−Lmin
Lmax+Lmin =

Lmax−Lmin
2

Lavg
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Measuring cortical maps
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• Surface reflectance (or voltage-sensitive-dye

emission) changes with activity

• Measured with optical imaging

• Preferences computed as correlation between

measurement and input
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Retinotopy/orientation map
0
o

4
o

2
o

2
o

4
o

6
o

8
o

6
o

8
o

0
o

2
o

4
o

6
o

8
o

4
o

2
o

6
o

Tr
ee

sh
re

w
;B

os
ki

ng
et

al
.2

00
2;

2×
2m

m

• Tree shrew has no fovea ; isotropic map
• All orientations represented for each retina location
• Orientation map is smooth, with local patches
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Macaque orientation map

M
ac

aq
ue

;B
la

sd
el

19
92

;4
×

3m
m

• Macaque monkey has fovea but similar orientation map

• Retinotopic map (not measured) highly nonlinear
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Ocular dominance map in V1

A
du

lt
m

on
ke

y;
B

la
sd

el
19

92
;4
×

3m
m

• Most neurons are binocular, but prefer one eye

• Eye preference alternates in stripes or patches
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Combined OR/OD map in V1
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• Same neurons have preference for both features

• OR has linear zones, fractures, pinwheels, saddles

• OD boundaries typically align with linear zones
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Direction map in V1

Direction preference

(3.2×2mm)

OR/Direction pref.

(1×1.4mm)
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• Local patches prefer different directions
• Single-OR patches often subdivided by direction
• Other maps: spatial frequency, color, disparity
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Cell-level organization

Rat V1 (scale bars 0.1mm)

Two-photon microscopy:

• New technique with

cell-level resolution

• Can measure a small

volume very precisely

(Ohki et al. 2005)
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Cell-level organization 2

Rat V1 (scale bars 0.1mm)

• Individual cells can be

tagged with feature

preference

• In rat, orientation

preferences are random

• Random also expected in

mouse, squirrel

(Ohki et al. 2005)
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Cell-level organization 3

Cat V1 Dir. (scale bars 0.1mm)

• In cat, validates results from

optical imaging

• Smooth organization for

direction overall

• Sharp, well-segregated

discontinuities

(Ohki et al. 2005)
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Cell-level organization 4

Low-res map (2×1.2mm)

Stack of all labeled

cells (0.6×0.4mm)

• Very close match with

optical imaging results

• Stacking labeled cells from

all layers shows very strong

ordering spatially and in

across layers

• Selectivity in pinwheels

controversial; apparently

lower

(Ohki et al. 2006)
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Surround modulation

10%

20%

30%

40%

Which of the contrasts at left matches the central area?
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Surround modulation

10%

20%

30%

40%

Which of the contrasts at left matches the central area? 40%
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Contextual interactions

• Orientation and shape perception is not entirely local
(e.g. due to individual V1 neurons).

• Instead, adjacent line elements interact (tilt illusion).

• Presumably due to lateral or feedback connections at
V1 or above.
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Lateral connections
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• Example layer 2/3 pyramidal cell

• Patchy every 1mm
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Lateral connections

(2.5 mm× 2 mm in tree shrew V1; Bosking et al. 1997)

• Connections up to 8mm link to similar preferences

• Patchy structure, extend along OR preference
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Feedback connections
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• Relatively little known about feedback connections

• Large number, wide spread

• Some appear to be diffuse

• Some are patchy and orientation-specific
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Visual development

Research questions:

• Where does the visual system structure come from?

• How much of the architecture is specific to vision?

• What influence does the environment have?

• How plastic is the system in the adult?

Most visual development studies focus on ferrets and cats,

whose visual systems are very immature at birth.
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Initial development
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• Tissues develop into eye, brain

• RGC axons grow from eye to LGN and superior

colliculus (SC) following chemical gradients

• Axons form synapses at LGN, SC

• LGN axons grow to V1, V2, etc., forming synapses
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Cortical development
• Coarse cortical architecture (e.g. division into areas)

appears to be fixed after birth

• Cortical architecture similar across areas

• Much of cortical development appears driven by

different peripheral circuitry (auditory, visual, etc.)

• E.g. Sur et al. 1988-2000: auditory cortex can develop

into visual cortex
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Rewired ferrets
Sur et al. 1988-2000: 1. Disrupt

connections

to MGN
2. RGC axons

now terminate

in MGN
3. Then to A1

instead of V1
4. ; Functional

orientation cells,

map in A1
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Human visual system at birth

• Some visual ability

• Fovea barely there

• Color vision poor

• Binocular vision difficult

– Poor control of eye movements

– Seems to develop later

• Acuity increases 25X (birth to 6 months)
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Map development

• Initial orientation, OD maps develop without visual

experience (Crair et al. 1998)

• Maps match between the eyes even without shared

visual experience (Kim & Bonhoeffer 1994)

• Experience leads to more selective neurons and maps

(Crair et al. 1998)

• Lid suture (leaving light through eyelids) during critical

period destroys maps (White et al. 2001)

; Complicated interaction between system and environment.
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OR map development
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• Map not visible when

eyes first forced open

• Gradually becomes

stronger over weeks

• Shape doesn’t change

significantly

• Initial development

affected little by dark

rearing
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Monocular deprivation
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• Raising with one

eyelid sutured shut

results in larger

area for other eye

• Sengpiel et al.

1999: Area for

overrepresented

orientations

increases too
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Internally generated inputs
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• Retinal waves: drifting patches of spontaneous activity

• Training patterns?
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Role of spontaneous activity
• Silencing of retinal waves prevents eye-specific

segregation in LGN (Huberman et al. 2003) and ocular
dominance columns in V1 (Huberman et al. 2006)

• Boosting in one eye disrupts LGN, but not if in both

• Disrupting retinal waves disrupts geniculocortical
mapping (Cang et al. 2005)

• Other sources of input to V1: spontaneous cortical
activity, brainstem activity

• All developing areas seem to be spontaneously active,
e.g. auditory system, spinal cord
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Timeline: Ferret
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Cat vs.
ferret

Should be

readable in a

printout, not

on screen

OD, Ocular dominance

MD, monocular deprivation

GC, ganglion cell

C-I, contralateral-ipsilateral

(Issa et al. 1999)
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Ferret vs. mouse
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Should be readable in a printout, not on screen
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Conclusions

• Early areas well studied

• Higher areas much less so

• Little understanding of how entire system works

together

• Development also a mystery

• Lots of work to do
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