CNV: Lecture slides and notes

Lecture slides are posted here as the course progresses, along with notes on each lecture.

Note that some slides are password protected because they contain copyrighted figures. These should be readable from any University of Edinburgh machine. To read them from an external machine such as a home system, the username and password can be found in /group/teaching/cnv/README on a UE Informatics DICE machine.

12 Jan 2009: Introduction (4up version)

Handing out introductory slides and giving overview of course, focusing on why vision is an important topic, why computational modeling can be useful, and what makes a particular type of computational model appropriate for a given use.

Note that this class differs from NIP (Neural Information Processing) in being much more qualitative, with very little mathematical work required, and by providing extensive background material on vision. It differs from NC by focusing on large numbers of units organized into topographic maps, rather than on more detailed study of individual neurons. It differs from CCN by being focused only on results from the neuroscience of vision and on models grounded on specific visual areas and circuits within them.

Required reading for next class: Chapter 1 of the CMVC text, plus sections 2-4 of Report of the 1st INCF Workshop on Large-scale Modeling of the Nervous System. Read the /group/teaching/cnv/README file mentioned above for information about obtaining the CMVC book.

15 Jan 2009: Vision background (4up version)

Beginning review of biological data about the visual system. Covering image formation, the gross anatomy of the visual system, and the structure and function of the retina.

Chapter 2 of the text is assigned as background reading.

As we work through this background material, you may find that this article is helpful for explaining any topic that I cover too quickly or that you want to follow up on:

Crick, F. and Asanuma, C. (1986) Certain aspects of the anatomy and physiology of the cerebral cortex. In J. L. McClelland and D. E. Rumelhart (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. II, chapter 20, pp. 333-371. MIT Press.

The Crick article covers most of the basic concepts in neuroscience from a modelling perspective, and goes into a lot more detail about molecular, cellular, and anatomical concepts than we will discuss in this course. The material in this article is not examinable, but may be helpful for anyone who does not have a prior background in this area. There are also a lot of other basic introductions to neuroscience available; I mention this one only because it is explicitly written from a modelling perspective.

19 Jan 2009:

Continuing review of the visual system, focusing on cell response types in the retina, LGN, and V1.

Suggested background reading: the vision chapter(s) of any neuroscience textbook, e.g. Bear, Connors, and Paradiso, Neuroscience: Exploring the Brain, or Kandel, Schwartz, and Jessell, Principles of Neural Science. But this is just for background and more information; as with the basic neuroanatomy reading above, none of it is required.

22 Jan 2009:

Continuing review of the visual system, focusing on feature maps in V1.

Required reading:

Hubel, D. H. and Wiesel, T. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex, J. Physiol. 160: 106-154.

Note that this is a long article, and you will not be examined on any of the details of its contents. So feel free to skim it at whatever level you prefer. Even so, this is the first important study of the electrophysiological properties of V1 neurons, and it is well worth reading. Other related papers on monkey cortex from the same authors can be found on the Background readings page, if you are interested.

26 Jan 2009:

Continuing review of the visual system, focusing on lateral interactions, feedback, and development.

Required reading:

Blasdel, Gary G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neuroscience 12: 3139--3161.

Again, this is a long and very detailed article, and so feel free to skim it looking for the high points. Even so, it is an excellent way to understand how optical imaging experiments are done, the types of analyses that can be done on cortical maps, etc.

Highly suggested reading:

von Melchner, L., Pallas, S.L., and Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404: 871--876.

An earlier review paper might also be good for background:

Sur, M., Pallas, S.L., and Roe, A.W. (1990). Cross-modal plasticity in cortical development: Differentiation and specification of sensory neocortex. Trends in Neurosciences 13: 227--233.

In answer to a question asked in class last year, a 1993 J. Comparative Neurology paper from the same group argues that connections from A1 to other cortical areas are not significantly modified in the rewired ferrets, suggesting that their behavioral performance is not due to A1 just linking up with the rest of the cortical visual stream.

29 Jan 2009: Modeling background (4up version)

Completing review of the visual system, focusing on spontaneous activity during development.

Beginning review of modeling approaches for computational neuroscience of vision, focusing on non-developmental models for early visual areas.

Suggested skimming (or reading if interested):

Huberman, A.D., Feller, M.B., and Chapman, B. (2008) Mechanisms Underlying Development of Visual Maps and Receptive Fields. Annual Review of Neuroscience 31:479--509.

02 Feb 2009:

Continuing review of modeling approaches, focusing on V1 cell models and SOM.

Watching movies of visual neurophysiology (Hubel and Wiesel), neural growth cones and axon pathfinding, CNS development, and LGN activity decoding.

Chapter 3 of the text is assigned as required background reading.

05 Feb 2009: LISSOM intro (4up version)

Continuing review of modeling approaches, focusing on SOM-based model of learning retinotopy. Discussing first part of assignment. Introducing the LISSOM model as a more biologically realistic but closely related way to develop maps, focusing on a simple retinotopy model.

09 Feb 2009: LISSOM orientation maps (4up version)

Covered LISSOM model in detail, and started talking about the LISSOM model of orientation preferences.

Chapter 4 and section 5.3 of the text is assigned as background reading.

12 Feb 2009:

Meeting in IF-2.40, to choose pairs and start on Assignment 1. I'll be answering questions, and helping everyone find a partner.

16 Feb 2009:

Continuing with LISSOM model of orientation maps. Discussing additional types of analyses, plus starting with mechanisms for working with large-scale images: scaling models to larger areas and densities.

Background reading: Chapter 8 starting with section 8.2.3, and chapter 15 through 15.2.3 (only skimming necessary).

19 Feb 2009:

Discussed second assignment, clarifying the interpretation of each type of visualization.

23 Feb 2009:

Completed discussion of LISSOM model of orientation maps, focusing on contrast-gain control via afferent normalization, the function and behavior of the map for real images, results for different training patterns, and pre-natal and post-natal development of orientation maps.

Background reading: chapter 9.

26 Feb 2009:LISSOM OR/OD/DR/etc. (4up version)

Discussing what visual features would be useful to measure besides orientation, focusing on properties that can be detected reliably through a small circular aperture with a limited resolution. Introducing LISSOM models of ocular dominance and joint models of orientation and ocular dominance.

Background reading: rest of chapter 5.

02 Mar 2009:

Discussing LISSOM models of ocular dominance, joint ocular dominance and orientation, and motion direction.

05 Mar 2009:

Discussing LISSOM models of joint ocular dominance, orientation, and motion direction, and individual and joint models for all visual features. Also collecting feedback on the course so far; if you missed today's lecture, then please fill out an online ITO form.

09 Mar 2009: Adult visual function (4up version)

Discussing models of adult visual function, focusing on surround modulation and aftereffects.

Background reading: Chapter 7 and Schwabe et al. (2006), The Journal of Neuroscience, 26:9117--9129.

12 Mar 2009: Adult visual function continued.

16 Mar 2009: Higher level models (4up version)

Models of areas beyond V1, and higher-level visual capabilities.

19 Mar 2009:: Higher-level models continued.

23 Mar 2009: Course summary and final exam preparation (4up version)

Background reading: Chapters 16, 17, 18.

26 Mar 2009: Optional meeting to work on assignment 2

In IF-2.39

Last updated: 2011/01/04 23:36:46


Home : Teaching : Courses : Cnv : 2008-2009 

Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, Scotland, UK
Tel: +44 131 651 5661, Fax: +44 131 651 1426, E-mail: school-office@inf.ed.ac.uk
Please contact our webadmin with any comments or corrections. Logging and Cookies
Unless explicitly stated otherwise, all material is copyright © The University of Edinburgh