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Sample network to model
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Tangential section with a small subset of neurons labeled

Where do we begin?
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Modeling approaches

Compartmental

neuron model

Integrate-and-fire / firing-rate model of the network
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One approach: model single cells extremely well

Our approach: many, many simple single-cell models
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Adult retina and LGN cell models
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• Standard model of adult RGC or LGN cell activity:

Difference of Gaussians

• Can be tuned for quantitative match to firing rate

• Can add temporal component (transient+sustained)
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Effect of DoG
ON:

original

OFF:

c0.5 s1.5 c1 s3 c3 s9 c10 s30 c30 s90

c1.5 s0.5 c3 s1 c9 s3 c30 s10 c90 s30

Each DoG, if convolved with the image, performs edge

detection at a certain size scale (spatial frequency band)
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Adult V1 cell model: Gabor
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Standard model of adult V1 simple cell spatial preferences:

Gabor (Gaussian times sine grating) (Daugman 1980)
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Adult V1 cell model: CGE
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• Gabor model fits spatial preferences

• Simple response function: dot product

• To match observations: need to add numerous nonlinearities

• Example: CGE model (Geisler & Albrecht 1997)
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Adult V1 cell model: Energy
• Spatiotemporal energy:

Standard model of

complex cell

(Adelson & Bergen 1985)

• Combines inputs from a

quadrature pair

(two simple cell models

out of phase)

• Achieves phase

invariance
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Retina/LGN development models

Relatively rare, but more in recent years:

• Retinal wave generation

(e.g. Feller et al. 1997)

• RGC development based on retinal waves

(e.g. Eglen & Willshaw 2002)

• Retinogeniculate pathway based on retinal waves

(e.g. Eglen 1999; Haith 1998)

Because of the wealth of data from the retina, such

models can now become quite detailed.
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Our focus: Cortical map models
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Basic architecture: input surface mapped to cortical

surface + some form of lateral interaction
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Kohonen SOM: Feedforward
Popular computationally tractable map model (Kohonen 1982)

Feedforward activity of unit (i, j):

ηij = ‖~V − ~Wij‖ (1)

(distance between input vector ~V and weight vector ~W )

Not particularly biologically plausible, but easy to compute,

widely implemented, and has some nice properties.

Note: Activation function is not typically a dot product;

the CMVC book is confusing about that.
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Kohonen SOM: Lateral
Abstract model of lateral interactions:

• Pick winner (r, s)

• Assign it activity ηmax

• Assume that activity of unit (i, j) can be described by

a neighborhood function, such as a Gaussian:

hrs,ij = ηmax exp
(
− (r − i)2 + (s− j)2

σ2
h

)
,

(2)

Models lateral interactions that depend only on distance

from winning unit.
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Kohonen SOM: Learning

Inspired by basic Hebbian rule (Hebb 1949):

w′ = w + αηχ (3)

where the weight increases in proportion to the product of

the input and output activities.

In SOM, the weight vector is shifted toward the input

vector based on the Euclidean difference:

w′
k,ij = wk,ij + α(χk − wk,ij)hrs,ij . (4)

Hebb-like, but depending on distance from winning unit
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SOM example: Input
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• SOM will be trained with unoriented Gaussian activity

patterns

• Random (x, y) positions anywhere on retina

• 576-dimensional input, but the x and y locations are

the only source of variance
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SOM: Weight vector self-org
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Iteration 0 Iteration 1000 Iteration 5000 Iteration 40,000
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Combination of input patterns; eventually settles to an exemplar
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SOM: Retinotopy self-org

Iteration 0: Initial Iteration 1000: Unfolding
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Initially bunched (all average to zero)

Unfolds as neurons differentiate
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SOM: Retinotopy self-org

Iteration 5000: Expanding Iteration 40,000: Final
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Expands to cover usable portion of input space.

CNV Spring 2008: Modeling background 17



Magnification of dense input areas

Gaussian distribution Two long Gaussians
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Density of units receiving input from a particular region

depends on input pattern statistics
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Principal components of data
distributions
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(a) Linear distribution (b) Nonlinear distribution
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PCA: linear approximation, good for linear data
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Nonlinear distributions:
principal curves, folding

P

f

(   )X

Principal curve

P(   )X

Folded curve

C
M

V
C

fig
ur

e
3.

9

Generalization of idea of PCA to pick best-fit curve(s)

Multiple possible curves
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Three-dimensional model of
ocular dominance

Representing the third dimension by

folding

Visualization of ocular

dominance
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Feature maps: Principal surfaces?
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Role of density of input sheet

• Gaussian inputs are nearly band-limited

(since Fourier transform is also Gaussian)

• Density of input sampling unimportant, if it’s greater

than 2X highest frequency in input (Nyquist theorem)
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Role of density of SOM sheet

SOM sheet acts as a discrete approximation to a

two-dimensional surface.

How many units are needed for the SOM depends on how

nonlinear the input distribution is — a smoothly varying

input distribution requires fewer units to represent the

shape.

Only loosely related to the input density – input density

limits how quickly the input varies across space, but only

for wideband stimuli.
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Summary

• Basic intro to visual modeling

• Adult models are well established, but vision-specific

• SOM: maps multiple dimensions down to two

• Feature maps: Principal surfaces?
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