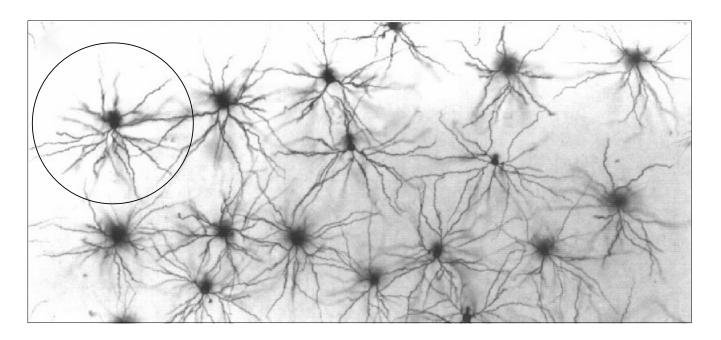
Modeling the Visual System

Dr. James A. Bednar

jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar

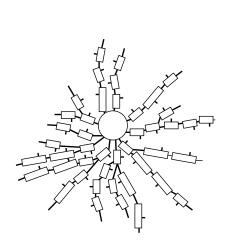
Sample network to model

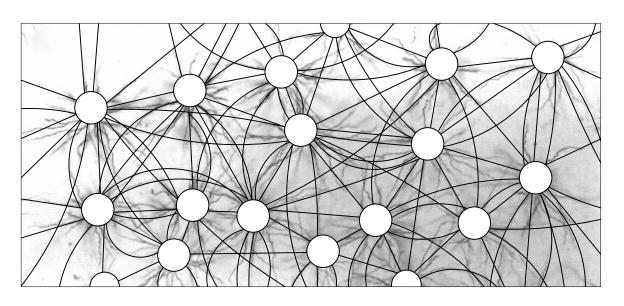


Tangential section with a small subset of neurons labeled

Where do we begin?

Modeling approaches

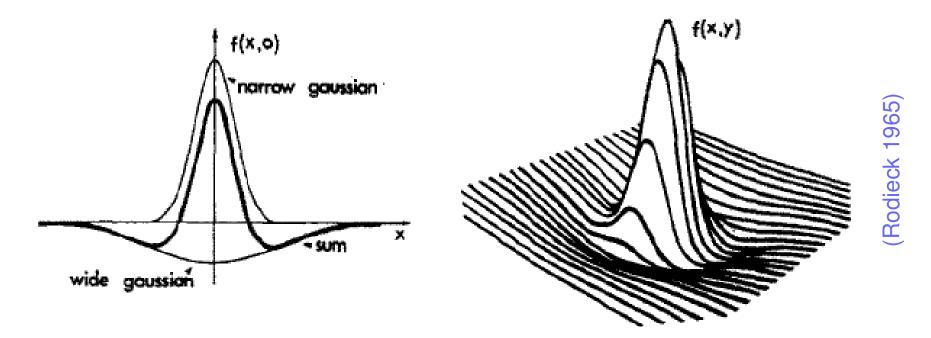




Compartmental Integrate-and-fire / firing-rate model of the network neuron model

One approach: model single cells extremely well Our approach: many, many simple single-cell models

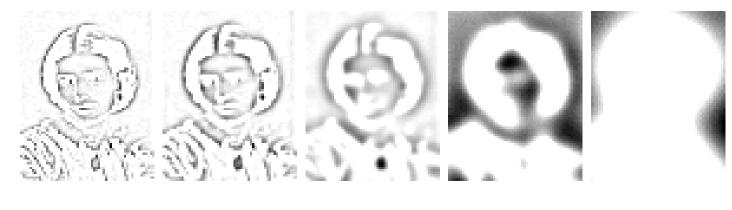
Adult retina and LGN cell models



- Standard model of adult RGC or LGN cell activity: Difference of Gaussians
- Can be tuned for quantitative match to firing rate
- Can add temporal component (transient+sustained)

Effect of DoG

ON:

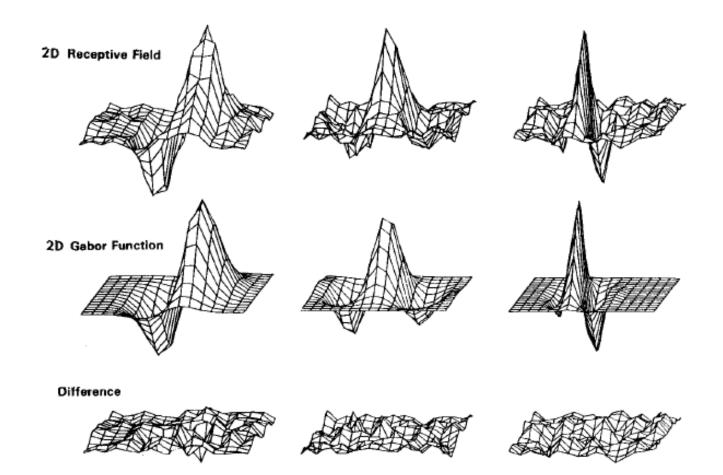


 c0.5 s1.5
 c1 s3
 c3 s9
 c10 s30
 c30 s90

 original
 Image: Comparison of the second sec

c1.5 s0.5 c3 s1 c9 s3 c30 s10 c90 s30 Each DoG, if convolved with the image, performs edge detection at a certain size scale (spatial frequency band)

Adult V1 cell model: Gabor

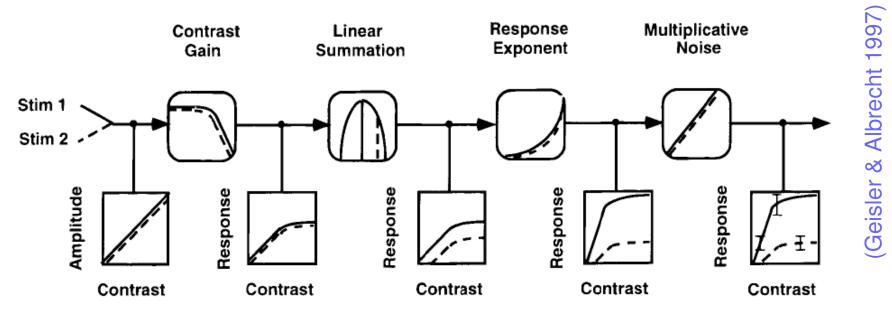


(Adult cat; Daugman 1988)

Standard model of adult V1 simple cell spatial preferences: Gabor (Gaussian times sine grating) (Daugman 1980)

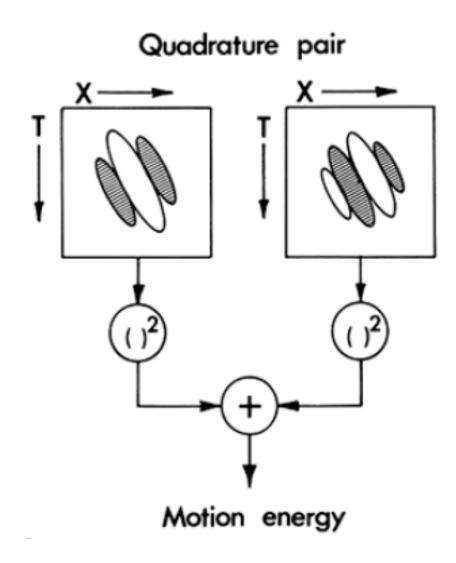
Adult V1 cell model: CGE

Contrast-Gain Exponent (CGE) Model



- Gabor model fits spatial preferences
- Simple response function: dot product
- To match observations: need to add numerous nonlinearities
- Example: CGE model (Geisler & Albrecht 1997)

Adult V1 cell model: Energy



- Spatiotemporal energy: Standard model of complex cell (Adelson & Bergen 1985)
- Combines inputs from a quadrature pair
 (two simple cell models out of phase)
- Achieves phase invariance

Retina/LGN development models

Relatively rare, but more in recent years:

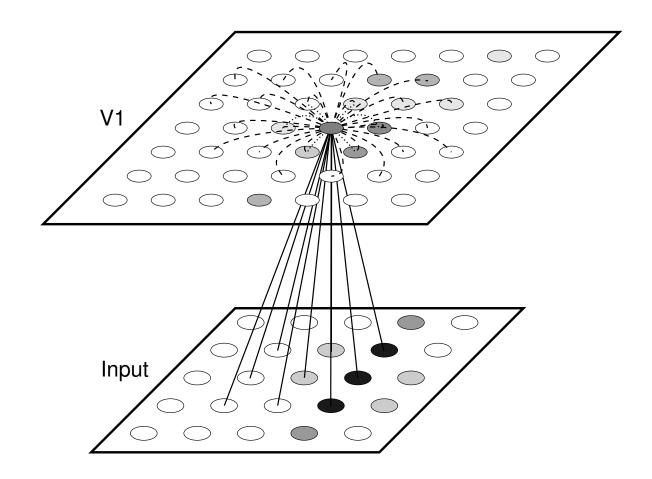
Retinal wave generation

(e.g. Feller et al. 1997)

- RGC development based on retinal waves (e.g. Eglen & Willshaw 2002)
- Retinogeniculate pathway based on retinal waves (e.g. Eglen 1999; Haith 1998)

Because of the wealth of data from the retina, such models can now become quite detailed.

Our focus: Cortical map models



CMVC figure 3.3

Basic architecture: input surface mapped to cortical surface + some form of lateral interaction

Kohonen SOM: Feedforward

Popular computationally tractable map model (Kohonen 1982)

Feedforward activity of unit (i, j):

$$\eta_{ij} = \|\vec{V} - \vec{W}_{ij}\|$$
 (1)

(distance between input vector \vec{V} and weight vector \vec{W})

Not particularly biologically plausible, but easy to compute, widely implemented, and has some nice properties.

Note: Activation function is not typically a dot product; the CMVC book is confusing about that.

Kohonen SOM: Lateral

Abstract model of lateral interactions:

- Pick winner (r, s)
- Assign it activity η_{\max}
- Assume that activity of unit (i, j) can be described by a neighborhood function, such as a Gaussian:

$$h_{rs,ij} = \eta_{\max} \exp\left(-\frac{(r-i)^2 + (s-j)^2}{\sigma_{\rm h}^2}\right),$$
(2)

Models lateral interactions that depend only on distance from winning unit.

CNV Spring 2008: Modeling background

Kohonen SOM: Learning

Inspired by basic Hebbian rule (Hebb 1949):

$$w' = w + \alpha \eta \chi \tag{3}$$

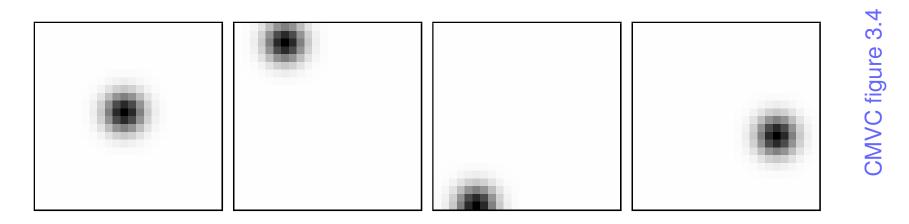
where the weight increases in proportion to the product of the input and output activities.

In SOM, the weight vector is shifted toward the input vector based on the Euclidean difference:

$$w'_{k,ij} = w_{k,ij} + \alpha(\chi_k - w_{k,ij})h_{rs,ij}.$$
 (4)

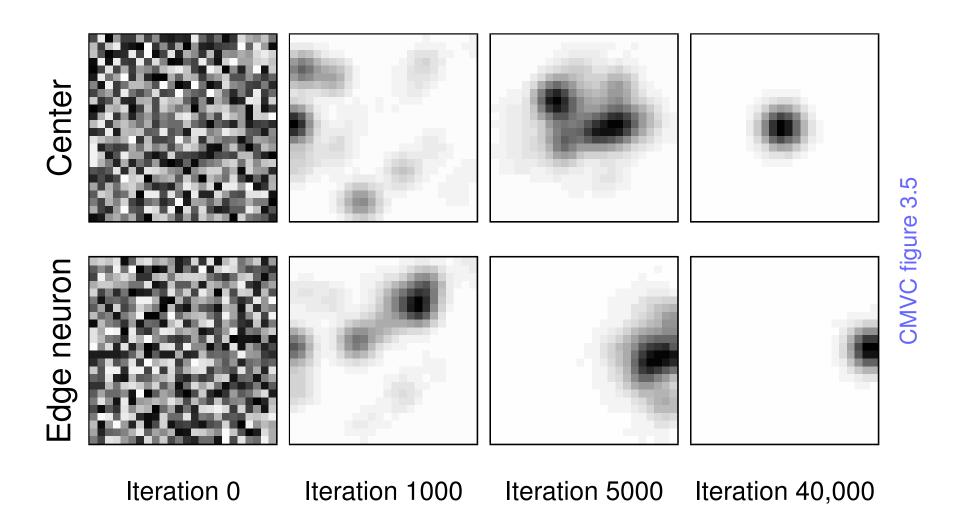
Hebb-like, but depending on distance from winning unit

SOM example: Input



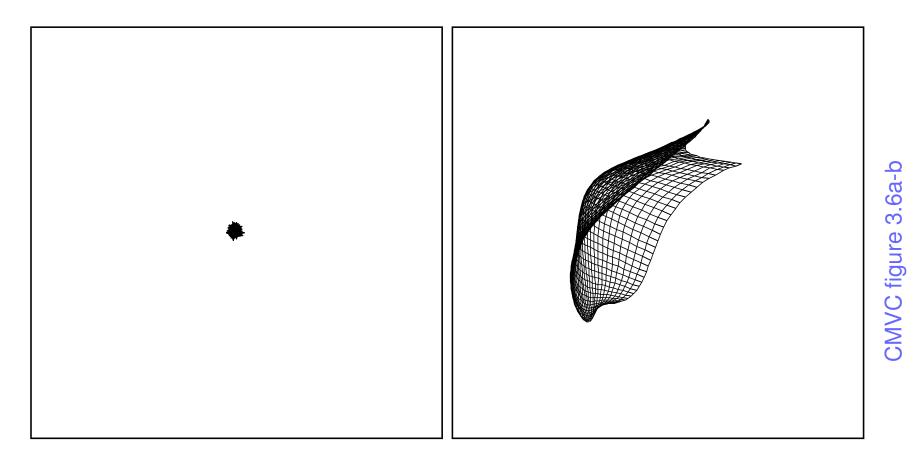
- SOM will be trained with unoriented Gaussian activity patterns
- Random (x, y) positions anywhere on retina
- 576-dimensional input, but the x and y locations are the only source of variance

SOM: Weight vector self-org



Combination of input patterns; eventually settles to an exemplar

SOM: Retinotopy self-org



Iteration 0: Initial

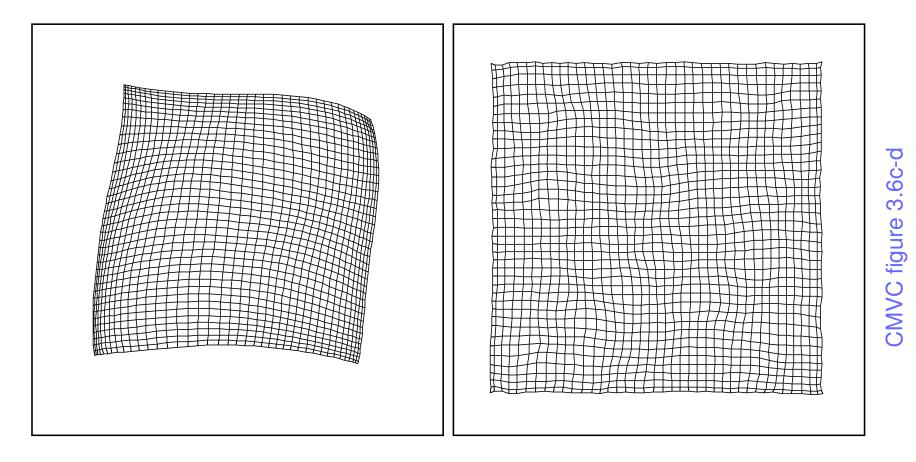
Iteration 1000: Unfolding

Initially bunched (all average to zero)

Unfolds as neurons differentiate

CNV Spring 2008: Modeling background

SOM: Retinotopy self-org

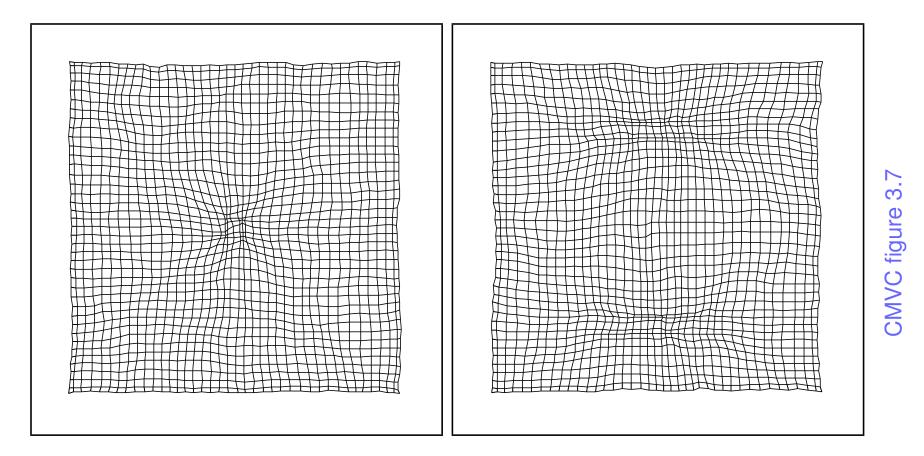


Iteration 5000: Expanding

Iteration 40,000: Final

Expands to cover usable portion of input space.

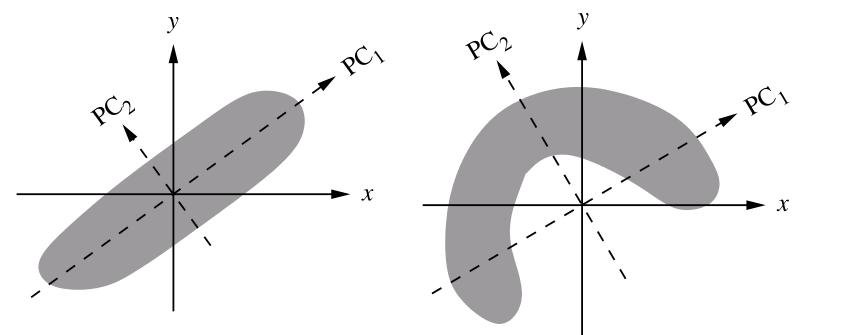
Magnification of dense input areas



Gaussian distribution Two long Gaussians Density of units receiving input from a particular region depends on input pattern statistics

CNV Spring 2008: Modeling background

Principal components of data distributions



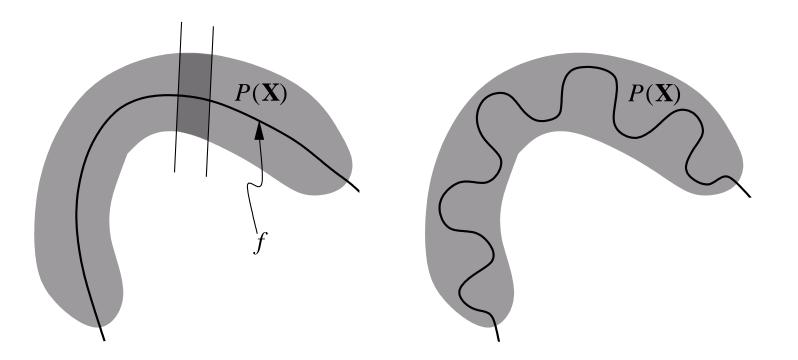
CMVC figure 3.8

(a) Linear distribution

(b) Nonlinear distribution

PCA: linear approximation, good for linear data

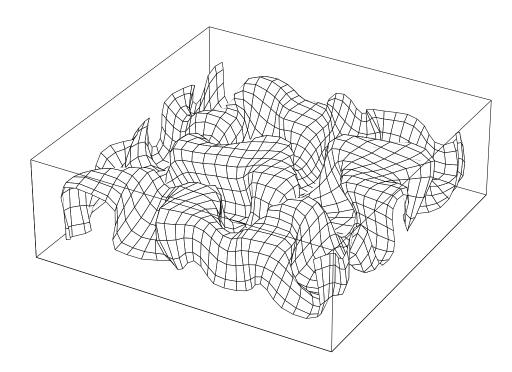
Nonlinear distributions: principal curves, folding



Principal curve Folded curve Generalization of idea of PCA to pick best-fit curve(s)

Multiple possible curves

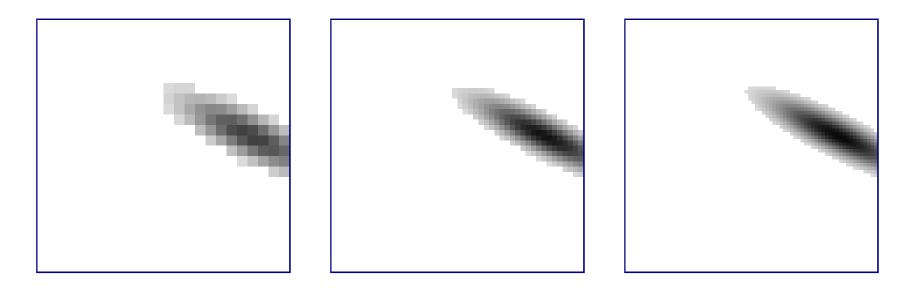
Three-dimensional model of ocular dominance



Representing the third dimension by folding Feature maps: Principal surfaces? Visualization of ocular dominance

CMVC figure 3.10

Role of density of input sheet



- Gaussian inputs are nearly band-limited (since Fourier transform is also Gaussian)
- Density of input sampling unimportant, if it's greater than 2X highest frequency in input (Nyquist theorem)

Role of density of SOM sheet

SOM sheet acts as a discrete approximation to a two-dimensional surface.

How many units are needed for the SOM depends on how nonlinear the input distribution is — a smoothly varying input distribution requires fewer units to represent the shape.

Only loosely related to the input density – input density limits how quickly the input varies across space, but only for wideband stimuli.

Summary

- Basic intro to visual modeling
- Adult models are well established, but vision-specific
- SOM: maps multiple dimensions down to two
- Feature maps: Principal surfaces?

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. *Journal of the Optical Society of America A*, *2*, 284–299.

Daugman, J. G. (1980). Two-dimensional spectral analysis of cortical receptive field profiles. *Vision Research*, *20*, 847–856.

Daugman, J. G. (1988). Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. *IEEE Transactions on Acoustics, Speech, and Signal Processing, 36* (7).

Eglen, S. J. (1999). The role of retinal waves and synaptic normalization

in retinogeniculate development. *Philosophical Transactions of the Royal Society of London Series B*, *354* (1382), 497–506.

Eglen, S. J., & Willshaw, D. J. (2002). Influence of cell fate mechanisms upon retinal mosaic formation: A modelling study. *Development*, *129* (23), 5399–5408.

Feller, M. B., Butts, D. A., Aaron, H. L., Rokhsar, D. S., & Shatz, C. J. (1997). Dynamic processes shape spatiotemporal properties of retinal waves. *Neuron*, *19*, 293–306.

Geisler, W. S., & Albrecht, D. G. (1997). Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification. *Visual Neuroscience*, *14* (5), 897–919. Haith, G. L. (1998). Modeling Activity-Dependent Development in the Retinogeniculate Projection. Doctoral Dissertation, Department of Psychology, Stanford University, Palo Alto, CA.

Hebb, D. O. (1949). *The Organization of Behavior: A Neuropsychological Theory*. Hoboken, NJ: Wiley.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. *Biological Cybernetics*, *43*, 59–69.

Rodieck, R. W. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. *Vision Research*, *5* (11), 583–601.