LISSOM Orientation Maps

Dr. James A. Bednar

jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar

Modeling Orientation

- Starting point: Retinotopy model
- Same architecture, different input pattern
- Three dimensions of variance: x, y, orientation
- How will that fit into a 2D map?

Retinotopy input and response

RetinalLGNIteration 0: Iteration 0:10,000:10,000:activationresponseInitial V1Settled V1Initial V1Settled V1responseresponseresponseresponseresponse

(Reminder from last time)

Orientation input and response

 Multiple activity blobs per input pattern: orientation-specific

CNV Spring 2007: LISSOM Orientation Maps

Self-organized V1 weights

Afferent (ON–OFF)

Lateral excitatory

Lateral inhibitory

Typical:

- Gabor-like afferent CF
- Nearly uniform short-range lateral excitatory
- Patchy, orientation-specific long-range lateral inhibitory

Self-organized weights across V1

Afferent (ON-OFF)

Lateral inhibitory

OR map self-organization

CNV Spring 2007: LISSOM Orientation Maps

selectivity

Macaque ORmap: Fourier, gradient

Fourier spectrum

Gradient

In monkeys:

- Ring-shaped spectrum: repeats regularly in all directions
- High gradient at fractures, pinwheels.

OR Map: Fourier, gradient

Fourier spectrum Gradient

LISSOM model has similar spectrum, gradient

OR Map: Retinotopic organization

- Retinotopy is distorted locally by orientation prefs
- Matches distortions found in animal maps?

OR Map: Lateral connections --/////\\\\\<u>\</u> **OR** weights CH ОВ **OR** connections

Connections in iso-OR patches

Connections in OR pinwheels Connections in OR saddles Connections in OR fractures CMVC figure 5.12

Effect of initial weights

Changing weights doesn't change map folding pattern.

Effect of input streams

Changing inputs changes entire pattern.

Scaling retinal and cortical area

(a) Original retina: R = 24 (b) Retinal area scaled by 4.0: R = 96

Scaling retinal and cortical area -//// [\ \ \ \ **\ **

(c) Original V1:

(d) V1 area scaled by 4.0: N = 54, 0.4 hours, 8 MB N = 216, 9 hours, 148 MB

CNV Spring 2007: LISSOM Orientation Maps

Retina scaled by 3

CNV Spring 2007: LISSOM Orientation Maps

Scaling cortical density

Above minimum density (due to lateral radii), density not crucial for organization

17

Full-size V1 Map

- Map scaled to cover most of visual field
- Allows testing with full-size images
 - 30 millionconnections

Sample Image

LGN Response

V1 Response with $\gamma_{\rm n}$

V1 Orientation Map

Afferent normalization

Mechanism for contrast invariant tuning:

$$s_{ij} = \frac{\gamma_{\rm A} \left(\sum_{\rho ab} \xi_{\rho ab} A_{\rho ab, ij}\right)}{1 + \gamma_{\rm n} \left(\sum_{\rho ab} \xi_{\rho ab}\right)}, \qquad (1)$$

 $\xi_{
ho ab}$: activation of unit (a, b) in afferent RF ho of neuron (i, j) $A_{ab,ij}$ is the corresponding afferent weight $\gamma_{\rm A}$, $\gamma_{\rm n}$ are constant scaling factors

LGN response to large image

Retinal activation

LGN response

LGN responds to most of the visible contours

V1 without afferent normalization

V1 response:

V1 response:

 $\gamma_{
m n}=0$, $\gamma_{
m A}=3.25$

 $\gamma_{
m n}=0$, $\gamma_{
m A}=7.5$

Cannot get selective response to all contours

CNV Spring 2007: LISSOM Orientation Maps

CMVC figure 8.2c-

V1 with afferent normalization

V1 response:

V1 response:

 $\gamma_{
m n}=0$, $\gamma_{
m A}=3.25$

 $\gamma_{
m n}=80, \gamma_{
m A}=30$

Responds based on contour, not contrast

Tuning with afferent normalization

Sine grating tuning curve:

- Without γ_n : selectivity lost as contrast increases
- With γ_n : always orientation-specific

CNV Spring 2007: LISSOM Orientation Maps

CMVC figure 5.13

OR Map: Retinal wave model

OR Map: Smooth disks

CMVC figure 5.13

OR Map: Natural images All types of RFs CMVC figure 5.13 Longer range lateral weights Retina LGN RFs Lls Histogram: horizontal, vertical bias **OR FFT** ORpref.&sel. **ORH**

CNV Spring 2007: LISSOM Orientation Maps

ORpref.&sel.

CMVC figure 5.13

el. ORH

OR FFT

OR Map: Uniform noise

Relatively unselective RFs

Modeling pre/post-natal phases

- **Prenatal:** internal activity
- Postnatal: natural images (Shouval et al. 1996)

Pre/post-natal V1 development

Neonatal map smoothly becomes more selective

Statistics drive development

OR Histograms

- (Coppola et al. 1998)
- After postnatal training on Shouval natural images, orientation histogram matches results from ferrets
- Model adapts to statistical structure of images

Summary

- Development depends on the features of the input pattern
- Orientation maps develop with many different input patterns
- Develops Gabor-type RFs with most inputs
- Breaks up image into oriented patches
- Response must be scaled by local contrast to work well for large images
- Matching biology requires prenatal, postnatal phases

References

Coppola, D. M., White, L. E., Fitzpatrick, D., & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex. *Proceedings of the National Academy of Sciences, USA*, *95* (5), 2621–2623.

Miikkulainen, R., Bednar, J. A., Choe, Y., & Sirosh, J. (2005). *Computational Maps in the Visual Cortex*. Berlin: Springer.

Shouval, H. Z., Intrator, N., Law, C. C., & Cooper, L. N. (1996). Effect of binocular cortical misalignment on ocular dominance and orientation selectivity. *Neural Computation*, 8 (5), 1021–1040.