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Motivation

* Energy security / peak-oll

- Transition to renewables/nuclear
- Reduce energy use
« Climate change
- Transition to renewables/nuclear/CCS
- Reduce energy use
« Economic growth

- Use cheapest energy sources first (fossil)!
- |ncrease energy use!
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Peak oil, mitigation options
Robert Hirsch et al
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Socolow & Pacala wedges
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Wedges examples

iIncrease fuel economy of
two billion cars from 30 to
60 mpg

drive two billion cars not
10,000 but 5,000 miles a
year (at 30 mpg)

cut electricity use Iin
homes, offices and stores
by 25%

raise efficiency at 1,600
large coal-fired plants from
40% to 60%

replace 1,400 large coal-
fired plants with gas-fired
plants

" POWERGENERATIGY g




Economic growth

« 19" century understanding

— only increasing either population or tax rates could generate
more surplus money

« Early 20" century concept of economic growth

— produce a greater surplus of value which could be expended
on something other than mere subsistence

05/02/09



Economic growth

Purpose of government policy is

— encourage economic activity...

— ... without encouraging rise in general level of prices
This must continue!

The market will find the optimum mix

More technology will deliver



Economic growth

Part lll: The Economics of Stabilisation

Projected trajectories for CO, are sensitive to long-run growth projections, but the likelihood of
economic growth slowing sufficiently to reverse emissions growth by itself is small. Most models
assume some decline in world growth rates in the medium to long run, as poorer countries catch
up and exhaust the growth possibilities from adopting best practices in production techniques. But
some go further and assume that developed-country income growth per head will actually decline.
There is no strong empirical basis for this assumption. Neither is the assumption very helpful if
one wishes to assess the consequences if developed economies do manage to continue to grow
at post-World War Il rates. .
The Economics of
The choice of method for converting the incomes of different countries into a comsion curreriay to = .
allow them to be aggregated also makes some difference — see Box 7.2. Fut given that the Clll‘ll:ll’E C'hﬂngf-'
growth rate of global GDP was around 2.9% per year on average between 1200 and 2000, an{
3.9% between 1950 and 2000, projecting world growth to continue at betweer| 2 an|d 3% per yea;
(as inthe IPCC SRES scenarios, for example) does not seem unreasonable. ==

« Global GDP was around 2.9%/y
between 1900 and 2000

« Therefore projecting world growth to
continue at between 2 and 3%/y
does not seem unreasonable

www.hm-treasury.gov.uk/media/2/5/Part_lI1_Introduction_Group.pdf



Conventional wisdom

Just a matter of technology coming to the rescue
Arbitrary levels for investment in this new technology
Mechanism simply involves getting the carbon price right
Then just need societal & political will to implement

After all, Stern’s Report (UK, Oct 2006) concluded:
— growth reduced by 1% is price for 3% growth



Problems to consider

« Rebound
« Energy cost of energy
« Recession works!



Sustainability’s triple bottom line?
despite Kuznets curve, energy use increases
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Energy efficiency increases energy consumption!
Jevons Paradox, rebound effect, Khazzoom-Brookes Postulate
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Energy rebound and economic growth..., Reinhard Madlener and Blake Alcott (2006)



EROEI
energy return on energy investment

Direct Enerqy {fuels.electricity)

Indirect Enerqy (capital, materials)

purchased

Figure 1 Definition of Energy Return on Energy Investment (EROEI)

Enet
+E

EROEI =
E

self purchased

www.eoearth.org/article/Net_energy_analysis



EROEI for transport fuels

Cutler Cleveland and Charles Hall
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hwww.aspo-usa.com/fall2006/presentations/pdf (Cleveland)



—

EXAMPLE

energy and embodied energy for nuclear power

gross energy production

energy consumed from ore to fuel
cumulative

depends on ore grade

energy
production E2
energy to consumer
reactor
startup
y

construction debt ‘

final shutdown
l construction
— = operational lifetime ——|
phase
A 1 phase 2
start of project » 100-150 years

www.stormsmith.nl



Embodied energy - process analysis approach
truncation problem of system boundary
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“The Economics of Climate Change”: ' ]
Nicholas Stern, only >-1%/y feasible =T

« Brazil's biofuels expanded 1977-20083:

carbon emissions rose 3.1%/y rather than
3.6%/y

The Economics of

UK “Dash for gas” Climate Change
1990-2000: -1%/y TR

FSU recession 1989-1998:
-5.2%/y

www.hm-treasury.gov.uk/independent_reviews/stern_review_economics_climate_change/sternreview_index.cfm



Carbon Emissions, Mte C.

Carbon history is of growth
only dipping with recessions
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Discuss

Incompatibility of climate/security with growth?
Rebound, EROEI, Recession?



Goal

Understand the energy basis of our
production/consumption system

(can we grow the system and reduce energy use?)



Building

Economic theory
conventional model of an economy
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Growth theory
neoclassical economics, key assumptions

marginal factor productivity equated with
factor share in the national accounts

labor, L, around 70%

capital, K, (interest, dividends, rents and royalties)
gets all of the rest

extractive resource owners hidden in the capital accounts;
perhaps 3-4% of GDP

» perfect substitutability: oil and gas are not essential to the world
because technology will always overcome resources

www.iea.org/Textbase/work/2004/eewp/Ayres-paper1.pdf



Growth theory
Solow

The model and changes in the saving rate [edit]

The graph is very similar to the
above, however, it now has a A
second savings function s, y,

Solow growth model and changes
in the saving rate (m+d)k

the blue curve. It
demaonstrates that an increase y=1K
in the saving rate shifts the T Y
function up. Saving per worker Yo
is now greater than population
growth plus depreciation, so B

capital accumulation Y sy
increases, shifting the steady
state fram point A to B. As A
can be seen on the graph,
output per worker
correspondingly moves from
¥ 1oy, Initially the economy

L

expands faster, but eventually
goes back to lhe.steady state 0 ko —> Ky
rate of growth which equals n. K

>

There is now permanently
higher capital and productivity per worker, but economic growth is the same as before the
Savings increase.

The model and changes in population [edit]

This graph is again very solowgm.mh model and populaﬁon
similar to the first one, A growhratechange (n+dk

huwg\rer, the population has (n+dk
now increased from n to n,,
th.is in.trod.uces a new capital y=1k)
widening line {n, +d)k, the blue Y
line. The praduction function + Y,
and the saving rate do not !
change. As there is now a Y
bigger labor force, but the sy,
zame amount of investment ¢ B
(saving), saving per warker
decreases, and therefore the
steady state shifts down from
Ato B. Capital per worker has
decreased from kEI to k,I \

saving per warker has
decreased from sy, to sy, 0 K ke )
and output per worker has ‘q— K

correspondingly decreased

tatal investment (left side) must equal the amount of growth in effective labor in addition to the
arnount of capital depreciation. This modification implies that the steady state level of output per
unit of effective labor is

a

}-’-F g 1—a
E_(5+9.++9m‘) .

Sirnilarly, the steady state level of capital per unit of effecitve labor is

K (s N\
AN \d+gatgn)

Mote: Although per unit growth is zero, the absolute levels of output 7" and capital " inthe
steady state are still growing at a constant positive rate g, +g,.> 0. This result is sometimes

referred to as balanced growth. Also note that the savings rate s does not affect the rate of
growth in the steady state, although it does still contribute to the initial level of output and
capital at the start of a period of balanced growth.

The golden rule savings rate 5" maximizes the steady state level of aggregate consumption o
per unit of effective labor, as defined by the national income (GDP) identity:

ve ¢t It
AN AN T anv

Assuming that the steady state level of investment " equals 577 the golden rule savings rate
solves the unconstrained maximization problem

ol s T—a s =
mﬁlﬁ_(5+g4+gm) _S(5+g,4+gw) '

c* ! s
In(—)=In(l-s) L .
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setting egual to zero and simplifying,
)
— 0 '

D=—s—|—(1—s)(

Since

finally,

en.wikipedia.org/wiki/Exogenous_growth_model




Cobb-Douglas production functions with L & K
USA 1900-2000
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The last oil shock, David Strahan (2007)



Technological progress function
Solow residual
USA 1900-2005

Index (1900=1)
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The Biophysical Economy

Work drives the economy

- Scientific: effort expended to get something done
Human ability to produce work

- 12 hours a day, 7 days a week is about 6 KwH

Economic development is the process of
replacement of human work with work from
animals and then work from energy resources

Technical progress means getting the same
result by applying less work (limits!)



Human Made Capital
(Capital Stock)

« Machines require work to be built, and require
that work be done to operate — need energy!

. Carnot: heat-to-work fraction = (T-T )/1
- e.g., diesel engine (773-373)/773 = 52%
— average efficiency economy wide ~ 20%

» Work required is huge: building 1 tractor takes
about 28,000 days (a lifetime) of human work

 Human energy is of low value (low temperature)

* Fossil energy is high value (high temperature)



Human Made Capital

 All the physical infrastructure we have
- housing
- factories
- energy services
- transport services

 Life-cycle analysis
- gives amount of work embodied in HMC
— account for in primary energy terms (gigajoules)

e one barrel oil ~ 5.7 GJ



Natural Resources

* Natural Capital

- flow resources (e.g., fresh water)

- stock resources

* renewable (wood)

* non-renewable (fossil fuels)

* Assume free and unlimited (!)

- but... embodied energy increases as easily
accessible sources are depleted/degraded

* e.g., fresh water



Thermodynamics

First law: can't win (order cannot increase)

- can't increase order in one place without decreasing
it at least as much somewhere else

Second law: can't break even (order decreases)
Production is generating order from disorder

- e.g., Iron-ore to car
- compensating disorder provided by energy source

* e.g., tree to carbon dioxide and ash

Energy is not like other natural resources!



Energy conversion efficiencies
USA 1900-1998

Part lll: The Economics of Stabilisation

Figure 7.5 Energy conversion efficiencies, USA, 1900-1998
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Source: Ayres et al (2005) and Ayres and Warr (2005) This graph shows the efficiency with which
power from fossil-fuel, hydroelectric and nuclear sources is converted into useful energy services.
The percentages reflect the ratio of useful work output to energy input.

www.hm-treasury.gov.uk/media/2/5/Part_lI1_Introduction_Group.pdf



Energy (exergy) conversion efficiencies
from available to useful energy (U)
USA 1900-1998

35%

electric power
generation & distribution

30% high temperature

industrial heat
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Exergy conversion efficiencies

10% -| other mechanical work
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www.iea.org/Textbase/work/2004/eewp/Ayres-paper1.pdf



Production function fit
USA

US GDP (1900=1) 1900-2000 excluding 1941-1948

25 /
7 GDP estimate
LINEX
20 & GDP estim ate
Cobb-Douglas
Em— Empirical
- GDP
15
10
PRE-WAR COBB DOUGLAS POST-WAR COBB DOUGLAS
| aipha=0.37 alpha=0.51
beta=0.44 beta=0.34
5 gamma=0.19 gamma=0.15

1900 1920 1940 1960 1980 2000
year



=1

Index, 1900

Real influence of energy?
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Growth theory
view of neoclassical economics (Brad DelLong)

“The bulk of the reason that Americans today are more
productive than their predecessors of a century ago is better
technology.”

We now know how to make electric motors, dope semiconductors,
transmit signals over fiber optics, fly jet airplanes, machine internal
combustion engines, build tall and durable structures out of concrete and
steel, record entertainment programs on magnetic tape, make hybrid
seeds, fertilize crops with nutrients, organize assembly lines, and a host
of other things our predecessors did not know how to do. Better technology
leads to a higher efficiency of labor--the skills and education of the labor
force, the ability of the labor force to handle modern machine technologies,
and the efficiency with which the economy's businesses and markets

function.

econ161.berkeley.edu/macro_online/gt_primer.pdf



Growth theory
contribution of useful energy (Ayres)

“In its present two-factor form, the Cobb-Douglas production
function permits future physical economic growth even with no
materials or energy consumption.”

“This is significant, because if resource consumption is not
needed to explain growth, then "decoupling’ growth from

resource consumption is conceptually easy: they were never
coupled in the first place.”



Elasticities of factors of production
USA 1900-1941, 1947-2000
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Future useful energy (U) depends on:
more cheap energy (exergy
improved conversion efficiencies
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Focus on Energy

* Energy is continually embodied in production

« Current energy sources are primarily fossil fuels
- increasingly hard to access (land vs. deep ocean)

- decreasing quality (Saudi oil vs. Canadian tar sands)

 We need to transition to sustainable (~500 years)
sources (solar, geothermal, tidal, ) nl)



EXAMPLE

. Energy Consumption by Source, Cuba, 1971-1999

abrupt transjtion
Cuba

15
16
14
12
10

B Renewables

B Fossil Fusls

million tons of oil equivalent

Fon I e N =}

1571 1981 191

the ina--

7 of Community

Hevaw Cubg Saery Lﬁl‘lpﬂkm:r

WWW. powerofcommunlty org



EXAMPLE
planned transition
Sweden

“Ridding ourselves of our
dependence on oil by the year
2020”

Through more efficient use of fuel
and new fuels, consumption of oil
In road transport shall be reduced
by 40-50%.

No oil shall be used for heating
residential and commercial
buildings

Industry shall reduce its
consumption of oil by 25-40%

million tons of oil equivalent

Energy Consumption by Source, Sweden, 1971-
1995

W Other
Fenswahbles

B Hydroelectric

Mucl=ar

M Fossil Fusls

www.sweden.gov.se/sb/d/3212/a/51058



EXAMPLE
Can PV feed-in law be afforded?
Germany

sl | % PV electricity .

| share of PV electricity in electricity usage | Jm

EOOW -1 = oo o 0 eSS e

for comparison: cumulated payments over 20 years -

present value of cumulated
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Photon International 5/2007



Discuss

Energy — is it special?



framework



ECCO model
Evaluating Capital Creation Options

Malcolm
Slesser
dedication




ECCO model
Evaluating Capital Creation Options

« physical economy model
* where energy and financial flows
* must conform to the laws of

— thermodynamics and

— mass balance



Energy flows
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ECCO modelling

rate of investment
in industry
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Whole economy expressed in energy units
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Embodied energy - input-output analysis
includes both direct and indirect energies
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Whole economy expressed in energy units

PJfa VPJra
extraction generation demand
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Whole economy expressed in energy units

PJfa [ VPJa [PJa & VPJra
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Whole economy expressed in energy units
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ECCO
calibration, eg 1981-1991 for
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www.cse.csiro.au/publications/reports.htm (Foran et al)



ECCO Applications



UK Model

« Currently being updated
* Being used for Peak Qil Task Force scenarios
e Suggests

- Balance of payments crisis by 2020 if no serious
action taken to develop new energy sources

- Policies to dampen industrial output may be needed
to contain rebound



Renewables problem:
the “energy winter” for transition
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OzEcco
Barney Foran

 Leader of the Resource Futures
Program, CSIRO.

www.abc.net.au/4corners/stories/s718235.htm



ECCO: renewable energy investment options
Oz calibrated 1981-1993, modelled 1994-2050
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www.cse.csiro.au/publications/reports.htm (Foran et al)



ECCO: renewable energy transition needs gas
Oz calibrated 1981-1993, modelled 1994-2050
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www.cse.csiro.au/publications/reports.htm (Foran et al)



OzEcco (2006):
Whole-economy transition to low-carbon

low greenhouse emissions

high transport fuel security

reasonable rates of economic growth

control of technology-rebound:

— funds quarantined from the Australian economy into a fund
45-year scenario:

— 80% renewable electricity

— 90% methanol from wood

Foran, B.D. and Crane, D. 2006

Powerful choices: options for Australia’s transition to a low carbon economy Advances in
Energy Studies: Perspectives on Energy Futures

5th Biennial International Workshop, Porto Venere, Italy, 12—16 September 2006



80% renewable electricity,
90% methanol from wood

OzEcco

Yearly Growth Rate in Yearly Gross Domestic Product
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Discuss

« How can ECCO models help with policy
evaluation?

* Would you use such a model for your economy
if it existed?

« Would you participate in building the model?

« Would you expect to run scenarios through the
model (EccoExplorer)?



Conclusions

« Serious energy-disconnect between
security/climate goals and GDP growth goal

« Along with energy efficiency, rebound must be
controlled



ECCO: systemic solution to rebound?
shift tax to fossil from labour

% difference
|
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_0*5 l | | 1 | | | | 1 | | 1 | 1 | 1
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Effect of Environmental Tax Reform on GDP www2.dmu.dk/COMETR/

Source: Cambridge Econometrics, modelled from 2006



Need better measures of “progress”
Index of Sustainable Economic Welfare (ISEW)

el 5
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90 - //& =
-“:' 1 1 ] '-H]' | 1 |
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“Economics of Nature and the nature of economics” ed Cleveland et al, 2001



How do we reconcile growth,
emissions and resources?

« Can'’t reconcile for conventional (GDP) growth.
» Planned transition more important.
« Carbon price will only work if it hurts.



Addendum: Credit Crunch

» Asset bubble was creation of fictitious monetary
value unrelated to underlying biophysical value

* The two must be brought into line

- Biophysical value can't be changed rapidly

- S0 monetary value must decrease rapidly
(deleveraging, toxic debt writedown, ...)

« Central Banks should run ECCO models
alongside their econometric models, as a sanity
check
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