StupidModel and Extensions: A Template and
Teaching Tool for Agent-based Modeling
Platforms

Steve Railsback, Steve Lytinen, and Volker Grimm

20th December 2005

SupidModel will make you smart!

Abstract

This document describes StupidModel, a set of 16 simple l@mpnodels
designed as examples for learning how to use agent-basealinpplatforms such
as Repast and Swarm. Each section describes a version adigagel. Version 1
is the basic StupidModel, which is extremely simple. As thet fixercise in a class
for nonprogrammers, Version 1 can be implemented in 2-3shdthie subsequent
versions incrementally add features that are commonly usezghl models. These
features include model elements such as interaction anmatigduals and their
environment, stopping rules, alternative orders in whiaividuals execute their
actions, mortality and reproduction, file input for habitariables, and multiple
kinds of agents. Some versions simply add software toolsdserving the model:
probes, graphs, and file output.

The documentation for each version states its purpose—twbbor technique
is illustrated by the version, describes its formulatiom] @rovides notes on how
the changes were implemented in the example software.

Available separately are our implementations of Stupiddad Mason, Net-
Logo, Repast, Objective-C Swarm, and Java Swarm; and natesich of these
implementations.

1 Basic StupidModel
1.1 Purpose

This is the basic StupidModel, an extremely simple indigildbased model used as a
starting point for learning Repast (or other IBM platforms)

1.2 Formulation

e The space is a two-dimensional grid of dimensions 100 x 108e Jpace is
toroidal, meaning that if bugs move off one edge of the gra/thppear on the
opposite edge.



e 100 bug agents are created. They have one behavior: moviagaadomly
chosen grid location within +/- 4 cells of their current Itica, in both the X and
Y directions. If there already is a bug at the location (indhg the moving bug
itself—bugs are not allowed to stay at their current locatimless none of the
neighborhood cells are vacant), then another new locagiohasen. This action
is executed once per time step.

e The bugs are displayed on the space. Bugs are drawn as rexcirbe display
is updated at the end of each time step.

e Instead of specifying which random number generation #lyorto use, the
default generator for each platform is used.

2 BugGrowth
2.1 Purpose

Illustrate adding instance variables and methods to thetage

2.2 Formulation

e Add a second bug action, grow. Each time step, a bug grows xga dimount,
1.0. So bugs need an instance variable for their size, whigfitialized to 1.0.
This action is scheduled after the move action.

e The bugs’ color on the display is shaded to reflect their sagg colors shade
from white when size is zero to red when size is 10 or greater.

3 Habitat Cdlsand Resource
3.1 Purpose

Show how to create cell objects that represent habitat aatibspesources. lllustrate
how agents and habitat cells interact.

3.2 Formulation

e A new class, HabitatCell, is added. Habitat cell objectshiagtance variables
for their food availability and maximum food productiongatCells also have a
variable for the bug at their location.

e The grid space object now holds habitat cells, not bugs.

e Food availability is initialized to 0.0, and maximum foodbpuction rate is ini-
tialized to 0.01.



e Each time step, food availability is increased by food piun. Food produc-
tion is a random floating point number between zero and theman food
production.

e Food production is scheduled before agent actions.

e Bug growth is modified so growth equals food consumption.dramsumption
is equal to the minimum of (a) the bug’s maximum consumptada (set to 1.0)
and (b) the bug’s cell’'s food availability.

e The food consumed by each bug is subtracted from the foodhhidy of its
cell.

4 Cedll and Bug Probes

4.1 Purpose

Show how to make model objects probeable from the display.

4.2 Formulation

Make the bugs, and the cells, so they can be probed via maaks oh the display.

5 Parametersand Parameter Displays

5.1 Purpose
Show how to define variables as parameters, and how to puhpéees in the parameter
settings window that appears at startup.

5.2 Formulation

Make these variables into parameters that can be acceseadltthe settings window:
e Initial number of bugs (a model parameter)
e The maximum daily food consumption (a bug parameter), and

e The maximum food production (a cell parameter).

6 Histogram Output

6.1 Purpose

lllustrate how to add graphs to the display. Provide thetgd see the size distribution
of the agents.



6.2 Formulation

Add a histogram display showing the number of agents in emehctass. (It works
reasonably well to use 10 bins, set minimum to zero, and sginnuan to 10.)

7 Stopping the Modd
7.1 Purpose

Show how to cause a model to stop itself upon a certain camdi8how how to “clean
up” when a model stops.

7.2 Formulation
e The model stops when the largest bug reaches a size of 100.

e Close the graphic windows (and do any other cleanup stepshwie program

stops.
8 File Output
8.1 Purpose

Show how to write results to an output file. lllustrate howterate over a list.

8.2 Formulation

Each time step, write the minimum, mean, and maximum bugaizene line of an
output file.

9 Randomized Agent Actions
9.1 Purpose

Show how to randomize the order in which agents execute @&mnact

9.2 Formulation

The bugs’ move action is altered so that the order in whichslmxgcute the action is
shuffled each time step.

10 Sorted Agent Actions
10.1 Purpose

Show how to sort a list of agents, and cause an agent actiendrdruted in size order.



10.2 Formulation

e The list of bugs is sorted by descending size order at theaftaach time step.

e The bugs’ move action is un-randomized so it is executed steleding size
order.

11 Optimal Movement

11.1 Purpose

Show how agents can identify and rank neighbor cells. Hiisthow to iterate over a
list.

11.2 Formulation

¢ Inits move method, a bug identifies a list of all cells thatwithin a distance of
4 grids but do not have another bug in them. (The bug’s cunelhts included
on this list.)

e The bug iterates over the list and identifies the cell witthiegf food availability.
The bug then moves to that cell.

12 Bug Mortality and Reproduction
12.1 Purpose

Show how to “kill” and drop objects from a model, and how toateenew objects
during a run.

12.2 Formulation

e When a bug’s size reaches 10, it reproduces by splittingSmew bugs. Each
new bug has an initial size of 0.0, and the old bug disappears.

e New bugs are placed at the first empty location randomly tsedewithin +/- 3
cells of their parent’s last location. If no location is idi€ied within 5 random
draws, then the new bug dies.

¢ A new bug parameter “survivalProbability” is initialized ©.95. Each time step,
each bug draws a uniform random number, and if it is greaser survivalProb-
ability, the bug dies and is dropped.

e This mortality action is scheduled after the bug moves aod/gr

e The model stopping rule is changed: the model stops afted fif@ steps have
been executed or when the number of bugs reaches zero.



13 Population Abundance Graph
13.1 Purpose

Show how to add a simple time series graph to a model. Thishgsajnportant for
understanding results now that reproduction and mortalignge the abundance of
bugs.

13.2 Formulation

No change is made to the model formulation. A graph is addelispday the number
of bugs alive at each time step.

14 Random Normal Initial Size
14.1 Purpose

Illustrate use of random number distributions. A common efsthem is to induce
variability among initial individuals.
14.2 Formulation

e Two new model parameters are added, and put on the pararetilegs window:
initialBugSizeMean and initialBugSizeSD. Values of thgsgameters are 0.1
and 0.03.

e Instead of initializing bug sizes to 1.0 (Sect. 2.2), sizesdrawn from a nor-
mal distribution defined by initialBugSizeMean and iniBagSizeSD. The ini-
tial size of bugs produced via reproduction is 0.0.

e Negative values are very likely to be drawn from normal disitions such as the
one used here. To avoid them, a check is introduced to lirtiaibug size to a
minimum of zero.

15 Habitat Data from File I nput
15.1 Purpose

Show how to read spatial data in from a file.

15.2 Formulation

e Instead of assuming the space size and assuming cell foddgtion is random
(Sect. 3.2), food production rates are read in from afile. fila@lso determines
the space size.



e The file contains one line per cell, with (a) X coordinate, Ybgoordinate, and
(c) food production rate.

e Food production in a cell is now equal to the production ragdrin from the
file, and is no longer random.

¢ Now, because we are representing real habitat with rea) dat@longer makes
sense for the space to be toroidal. So the space objects aretmaot-related
methods must be modified so bugs cannot move off the edgeioktiae.

e The input file is Stupid_Cell.Data. It has X, Y, and food protion data for a
grid space. X ranges from 0 to 250; Y ranges from 0 to 112. Thesfdrts with
three lines of header information that is ignored by the rhode

e The cells are now displayed and colored to indicate theneruifood availability.
Cell colors scale from black when cell food availability isra to green when
food availability is 0.5 or higher.

e A change to the bug move method is required to avoid a verngtastifact now
that cell food production is no longer random. Near the stdd simulation,
many cells will have exactly the same food availability, seug simply would
move to the first cell on its list of neighbor cells. This is alg the top-left cell
among the neighbors, so bugs move constantly up and leftlifeatells available
to them have the same food availability. This artifact is oged by randomly
shuffling the list of available cells before the bug loop®tigh it to identify the
best.

16 Predators
16.1 Purpose

Show how to create multiple classes of agents that interact.

16.2 Formulation

e 200 predator objects are intialized and randomly distabwds the bugs are. A
cell can contain a predator as well as a bug. Predators aatedrafter bugs are.

e Predators have one method: hunt. First, a predator looksidihr a shuffled
list of its immediately neighboring cells (including its aveell). As soon as
the predator finds a bug in one of these cells it “kills” the gl moves into
the cell. (However, if the cell already contains a predatwe,hunting predator
simply quits and remains at its current location.) If theskisccontain no bugs,
the predator moves randomly to one of them.

e Predator hunting is scheduled after all the bug actions.



