
Introduction
Sentence Processing
Probabilistic Model

Modeling Results

Cognitive Modeling
Lecture 15: Probabilistic Models of Syntactic Processing

Sharon Goldwater

School of Informatics
University of Edinburgh
sgwater@inf.ed.ac.uk

March 1, 2010

Sharon Goldwater Cognitive Modeling 1

sgwater@inf.ed.ac.uk


Introduction
Sentence Processing
Probabilistic Model

Modeling Results

1 Introduction

2 Sentence Processing
Disambiguation and garden paths
Parser Architectures

3 Probabilistic Model
Overview
Probabilistic Grammars
Valence Probabilities

4 Modeling Results
Construction probabilities
Valence Probabilities
Combined Probabilities
Open Issues

Reading: Jurafsky (1996).

Sharon Goldwater Cognitive Modeling 2



Introduction
Sentence Processing
Probabilistic Model

Modeling Results

Jurafsky (1996)

Covers a lot of ground: a unified probabilistic account of much
previous work, explaining frequency and context effects.

Lexical access (word recognition)

Idiom/phrase access

Syntactic processing (access and disambiguation)

We’ll focus on syntactic processing.

Model shows how augmenting parallel parser with probabilities
can explain garden paths and disambiguation.

By analogy with lexical access, Jurafsky then argues for
parallel over serial architecture.
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Disambiguation

Main assumptions of Jurafsky (1996):

Observed preferences in interpretation of ambiguous sentences
reflect probabilities of different syntactic structures.

Garden path effects are merely extreme cases of processing
preferences.

Examples from several types of ambiguity:

Lexical category ambiguity

Attachment ambiguity

Main clause vs. reduced relative clause ambiguity
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Lexical category ambiguity

Ambiguity resolved without trouble (fires = N or V):

(1) a. The warehouse fires destroyed all the buildings.
b. The warehouse fires a dozen employees each year.

Ambiguity leads to garden path (complex= N or Adj, houses= N
or V, etc.):

(2) a. #The complex houses married and single students.
b. #The old man the boats.

Note: # means garden path.
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Attachment ambiguity

Prepositional phrase can attach to NP or VP.

(3) I saw the man with the glasses.

VP

���
HHH

V

saw

NP

���
HHH

NP

��HH
the man

PP

�� HH
with NP

�� HH
the glasses

VP

�
���

H
HHH

VP

�� HH
V

saw

NP

��HH
the man

PP

�� HH
with NP

�� HH
the glasses

(4) #The landlord painted the walls with cracks.
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Subcategorization frames

Attachment preferences vary between verbs (Ford et al. 1982):

(5) The women discussed the dogs on the beach.

a. The women discussed the dogs that were on the beach.
(90%)

b. The women discussed the dogs while on the beach. (10%)

(6) The women kept the dogs on the beach.

a. The women kept the dogs that were on the beach. (5%)
b. The women kept them (the dogs) on the beach. (95%)

The arguments required by a verb are its subcategorization frame
or valence. Different valence preferences create different
attachment preferences.
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Main clause vs. reduced relative clause

Reduced relative clause: that-clause without the that.

(7) a. #The horse raced past the barn fell.
b. The horse found in the woods died.

Another case of different subcategorization preferences:

X raced >> X raced Y

X found Y >> X found
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Serial parsing

if multiple rules can apply, choose one based on a selection
rule;

if parse fails, backtrack to choice point and reparse;

example selection rule: minimal attachment (choose the tree
with the fewest nodes).

garden path means the wrong tree was selected at a choice
point;

backtracking occurs, causes increased processing times.
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Parallel parsing

if multiple rules can apply, pursue all possibilities in parallel;

if any parse fails, discard it;

problem: number of parse trees can grow exponentially.

solution: only pursue a limited number of possibilities
(bounded parallelism).

garden path means correct tree was pruned from search space;

backtracking occurs, causes increased processing times.
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A probabilistic parallel parser

Jurafsky (1996) adopts probabilistic parsing techniques from
computational linguistics in a parallel parsing model.

Each full or partial parse is assigned a probability.

Parses are pruned from the search space if their probability is
a factor of α below the most probable parse (beam search).

Other pruning methods are possible, e.g., maintain a fixed
number of parses at all times.

How are parse probabilities determined?
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Computing parse probabilities

Jurafsky (1996) focuses on two sources of information:

Construction probabilities: probability of syntactic tree.

Valence probabilities: probability of particular syntactic
categories as arguments for specific verbs.

Assumes that construction probabilities and valence probabilities

are independent, so

P(parse) = P(constructions) * P(subcat frames)

can be estimated from a large treebank using relative
frequencies.

(Note: parts of the paper use Construction Grammar formalism; this is slightly

different from the construction in construction probabilities.)

Sharon Goldwater Cognitive Modeling 12



Introduction
Sentence Processing
Probabilistic Model

Modeling Results

Overview
Probabilistic Grammars
Valence Probabilities

Probabilistic Context-free Grammars

P(constructions) is computed as Ppcfg (parse).

Example (Manning and Schütze 1999)

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.7 NP → ears 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → stars 0.18
V → saw 1.0 NP → telescopes 0.1

The rule A → B C with probability p means

P(left-hand side expands as B C | left-hand side is A) = p

so, probabilities of all rules with the same LHS sum to one;

Ppcfg (parse) =
∏

Ppcfg (rulei ) of all rules applied in the parse.
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Probabilistic Context-free Grammars

Example (Manning and Schütze 1999)

S1.0

����

HHHH

NP0.1

astronomers

VP0.7

��
��

HH
HH

V1.0

saw

NP0.4

���
HHH

NP0.18

stars

PP1.0

�� HH
P1.0

with

NP0.18

ears

P(t1) = 1.0 · 0.1 · 0.7 · 1.0 · 0.4 · 0.18 · 1.0 · 1.0 · 0.18 = 0.0009072
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Probabilistic Context-free Grammars

Example (Manning and Schütze 1999)

S1.0

�
����

HHHHH

NP0.1

astronomers

VP0.3

��
��

H
H

HH

VP0.7

�� HH
V1.0

saw

NP0.18

stars

PP1.0

�� HH
P1.0

with

NP0.18

ears

P(t2) = 1.0 · 0.1 · 0.3 · 0.7 · 1.0 · 0.18 · 1.0 · 1.0 · 0.18 = 0.0006804
t1 more probable than t2.
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Valence Probabilities

Subcategorization frames of the verb keep:

NP AP keep the prices reasonable
NP VP keep his foes guessing
NP VP keep their eyes peeled
NP PRT keep the people in
NP PP keep his nerves from jangling

Valence probabilities tell us how likely each of these frames is.
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Valence Probabilities

Like PCFG probabilities, valence probabilities are estimated from a
treebank.

Example

discuss 〈NP PP〉 .24
〈NP〉 .76

keep 〈NP XP[pred +]〉 .81
〈NP〉 .19
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
S → NP . . . 0.92 N → houses 0.00055
NP → Det Adj N 0.28 Adj → complex 0.00086
Det → the 0.71

S

�
���

H
HHH

NP

�
����

H
HHHH

Det

the

Adj

complex

N

houses

. . .

p(t1) = 8.5 · 10−8 (preferred)
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Modeling Garden Path Effects

Garden path caused by construction probabilities:
NP → Det N 0.63 V → houses 0.000052
S → [NP VP[V . . . 0.48 Det → the 0.71
N → complex 0.000029

S

�
�

��

H
HHH

NP

�� HH

Det

the

N

complex

VP
�� HH

V

houses

. . .

p(t2) = 3.2 · 10−10 (grossly dispreferred)
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Modeling Disambiguation

Disambiguation using construction probabilities, no garden path:
S → NP . . . 0.92 N → fires 0.00017
NP → Det N N 0.28

S

�
���

HH
HH

NP

�
����

H
HHHH

Det

the

N

warehouse

N

fires

. . .

p(t1) = 4.2 · 10−5 (preferred)
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Modeling Disambiguation

Disambiguation using construction probabilities, no garden path:
NP → Det N 0.63 V → fires 0.000036
S → [NP VP[V . . . 0.48

S

�
����

H
H

HHH

NP

�
��

H
HH

Det

the

N

warehouse

VP
�� HH

V

fires

. . .

p(t2) = 1.1 · 10−5 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(keep, 〈NP XP[pred +]〉) = 0.81
VP → V NP XP 0.15

VP

�
��

�
�

��

H
HH

H
H

HH

V

keep

NP

the dogs

PP

on the beach

p(t1) = 0.15 · 0.81 = 0.12 (preferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(keep, 〈NP〉) = 0.19 VP → V NP 0.39

NP → NP XP 0.14

VP

����

HHHH

V

keep

NP

��
��

HHHH

NP

the dogs

PP

on the beach

p(t2) = 0.19 · 0.39 · 0.14 = 0.01 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(discuss, 〈NP PP〉) = 0.24
VP → V NP XP 0.15

VP

�
��

�
�

��

H
HH

H
H

HH

V

discuss

NP

the dogs

PP

on the beach

p(t1) = 0.15 · 0.24 = 0.036 (mildly dispreferred)
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Modeling Valence Preferences

Disambiguation using valence probabilities, no garden path:
p(discuss, 〈NP〉) = 0.76 VP → V NP 0.39

NP → NP XP 0.14

VP

�
�

��

HH
HH

V

discuss

NP

�
�

��
H

H
HH

NP

the dogs

PP

on the beach

p(t2) = 0.76 · 0.39 · 0.14 = 0.041 (preferred)
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Combining valence and construction probabilities

Garden path caused by construction probabilities and valence
probabilities:
p(race, 〈NP〉) = 0.92

S

�
��

H
HH

NP

the horse

VP

raced

p(t1) = 0.92 (preferred)
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Combining valence and construction probabilities

Garden path caused by construction probabilities and valence
probabilities:
p(race, 〈NP NP〉) = 0.08
NP → NP XP 0.14

S

�
��

HHH

NP

�
��

H
HH

NP

the horse

VP

raced

. . .

p(t2) = 0.0112 (grossly dispreferred)
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Combining valence and construction probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
p(find, 〈NP〉) = 0.38

S

�
��

H
HH

NP

the bird

VP

found

p(t1) = 0.38 (preferred)
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Combining valence and construction probabilities

Disambiguation using construction probabilities and valence
probabilities, no garden path:
p(find, 〈NP NP〉) = 0.62
NP → NP XP 0.14

S

�
��

H
HH

NP

��� HHH

NP

the bird

VP

found

. . .

p(t2) = 0.0868 (mildly dispreferred)
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Setting the Beam Width

Crucial assumption: if the relative probability of a tree falls below a
certain value, then it will be pruned.

sentence probability ratio

the complex houses . . . 267:1
the horse raced . . . 82:1

the warehouse fires . . . 3.8:1
the bird found . . . 3.7:1

Assumption: a garden path occurs if the probability ratio is higher
than 5:1.
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Open Issues

Incrementality: Can we make more fine-grained predictions of
the time course of ambiguity resolution?

Coverage: Jurafsky used hand-crafted examples. Can we use a
probabilistic parser that is trained on a real corpus?

Crosslinguistics: does this model work for languages other
than English?
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Summary

Different types of garden paths: main clause/reduced relative;
attachment ambiguity; lexical category;

rating studies provide evidence for subcat frame preferences;

modeling assumption:

parser with bounded parallelism;
pruning of improbable analyses (beam search);
independent combination of PCFG and valence probabilities;

Model accounts for human parse preferences in several
well-known examples.

beam width: ratio of the probability of the preferred analysis to
the dispreferred analysis; needs to be determined empirically.
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