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Reading: Cooper (2002: Ch. 6, Secs. 6.1,6.2).
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Decision Making

How do people make decisions? For example,

Medicine: Which disease to diagnose?

Business: Where to invest? Whom to trust?

Law: Whether to convict?

Admissions/hiring: Whom to accept?

In all these cases, two kinds of information is used:

Background knowledge (prevalence of disease, previous
experience with business partner, historical rates of return in
market, etc).

Specific information about this case (test results, facial
expressions and tone of voice, company business reports, etc)
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Decision Making

Example question from a study of decision-making for medical
diagnosis (Casscells et al. 1978):

Example

If a test to detect a disease whose prevalence is 1/1000 has a
false-positive rate of 5%, what is the chance that a person found
to have a positive result actually has the disease, assuming you
know nothing about the person’s symptoms or signs?
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Decision Making

Most frequent answer: 95%

Reasoning: if false-positive rate is 5%, then test will be correct
95% of the time.

Correct answer: about 2%

Reasoning: assume you test 1000 people; only about one person
actually has the disease, but the test will be positive in another 50
or so cases (5%). Hence the chance that a person with a positive
result has the disease is about 1/50 = 2%.

Only 12% of subjects give the correct answer.

Mathematics underlying the correct answer: Bayes’ Theorem.
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Bayes’ Theorem

To analyze the answers that subjects give, we need:

Bayes’ Theorem

Given a hypothesis h and data D which bears on the hypothesis:

P(h|D) =
P(D|h)P(h)

P(D)

P(h): independent probability of h: prior probability
P(D): independent probability of D
P(D|h): conditional probability of D given h: likelihood
P(h|D): conditional probability of h given D: posterior probability

We also need the rule of total probability.
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Total Probability

Theorem: Rule of Total Probability

If events B1,B2, . . . ,Bk constitute a partition of the sample space
S and P(Bi ) 6= 0 for i = 1, 2, . . . , k, then for any event A in S :

P(A) =
k∑

i=1

P(Bi )P(A|Bi )

B1,B2, . . . ,Bk form a
partition of S if they are
pairwise mutually exclusive
and if B1∪B2∪ . . .∪Bk = S .
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Application of Bayes’ Theorem

In Casscells et al.’s (1978) example, we have:

h: person tested has the disease;

h̄: person tested doesn’t have the disease;

D: person tests positive for the disease.

P(h) = 1/1000 = 0.001 P(h̄) = 1− P(h) = 0.999
P(D|h̄) = 5% = 0.05 P(D|h) = 1 (assume perfect test)

Compute the probability of the data (rule of total probability):

P(D) = P(D|h)P(h)+P(D|h̄)P(h̄) = 1·0.001+0.05·0.999 = 0.05095

Compute the probability of correctly detecting the illness:

P(h|D) =
P(h)P(D|h)

P(D)
=

0.001 · 1
0.05095

= 0.01963
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Base Rate Neglect

Base rate: the probability of the hypothesis being true in the
absence of any data (i.e., P(h)).

Base rate neglect: people tend to ignore/discount base rate
information (as in Casscells et al.’s (1978) experiments).

has been demonstrated in a number of experimental
situations;

often presented as a fundamental bias in decision making.

Does this mean people are irrational/sub-optimal?
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Base Rates and Experience

Casscells et al.’s (1978) study is abstract and artificial. Other
studies show that

data presentation affects performance (1 in 20 vs. 5%).

direct experience of statistics (through exposure to many
outcomes) affects performance.

task description affects performance (“psychological test”
versus “statistics test” when assessing personal profiles).

Suggests subjects may be interpreting questions and determining
priors in ways other than experimenters assume.

Ex: is it reasonable to assume that a medical test is given if
there is no evidence of disease?
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Base Rates and Experience

First, evidence that subjects can use base rates: diagnosis task of
Medin and Edelson (1988).

Training phase:

subjects were presented with pairs of symptoms and had to
select one of six diseases;
feedback was provided so that they learned symptom/disease
associations;
different diseases had different base rates;
ended when subjects had achieved perfect diagnosis accuracy.

Transfer phase:

subjects were tested on single symptoms and combinations
they had not seen in the training phase.
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Experimental Data

Structure of Medin and Edelson’s (1988) experiment:

Symptoms Disease No. of trials

a & b 1 3 trials
a & c 2 1 trial
d & e 3 3 trials
d & f 4 1 trial
g & h 5 3 trials
g & i 6 1 trial

Symptoms a, d, g are imperfect predictors; symptoms b, c, e, f, h, i
are perfect predictors.

Diseases 1, 3, 5 are high frequency, diseases 2, 4, 6 are low
frequency.
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Experimental Results

Results in transfer phase:

when presented with a high frequency perfect predictor
(e.g., b), 81.2% responses for correct disease (e.g., 1);

when presented with a low frequency perfect predictor
(e.g., c), 92.7% responses for correct disease (e.g., 3).

Indicates: symptom/disease associations acquired correctly.

when presented with a high freq. imperf. predictor (e.g., a),
78.1% responses for correct high freq. disease (e.g., 1), 14.6%
responses for correct low freq. disease (e.g., 2).

Indicates: base rate information is used.
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Modeling Decision Making

Medin and Edelson’s (1988) results suggest that decision-making
could be based on Bayesian reasoning.

Cooper (2002: Ch. 6) presents a Cogent model:

knowledge base contains frequency information about
symptoms and diseases, acquired by counting.

computes predictions using Bayes’ Rule.

Problems: no plausible model of learning, prediction fails in
transfer phase when symptoms conflict.
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Cooper’s (2002) Model

In transfer phase, subjects are presented with symptoms s and
have to predict a disease d . Model does so using Bayes’ Rule:

P(d |s) =
P(s|d)P(d)

P(s)

P(s|d), P(d), and P(s) are determined from frequencies observed
in the training phase.
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Cooper’s (2002) Model

Compute probabilities from frequency counts:

P(d1) = 3/12 P(a|d1) = 3/3 P(a) = 4/12
P(d2) = 1/12 P(b|d1) = 3/3 P(b) = 3/12
. . . P(a|d2) = 1/1 P(c) = 1/12

P(c |d2) = 1/1 . . .
. . .

Compute predictions given a single symptom:

P(d1|a) =
P(a|d1)P(d1)

P(a)
=

(3/3)(3/12)

4/12
= .75

P(d1|b) =
P(b|d1)P(d1)

P(b)
=

(3/3)(3/12)

3/12
= 1

Similarly, P(d2|a) = .25, P(d2|c) = 1.
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Cooper’s (2002) Model

What about conflicting symptoms?

P(d1|b, c) =
P(b, c |d1)P(d1)

P(b, c)
=

(0)(3/12)

0
=??

Cooper uses this problem with conflicting symptoms to argue
against the Bayesian model.

However, Cooper’s implementation takes a naive view of
probability.
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Uncertainty

In probabilistic models, there are two sources of uncertainty.

1 Given a known distribution P(X ), the outcome is uncertain.

e.g., P(X = a) = .3,P(X = b) = .7

2 In general, the distribution itself is uncertain, as it must be
estimated from data.

e.g., P(X = a) ≈ .3 or P(X = a) = .3± .01

Cooper’s model fails to consider the second kind of uncertainty.
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Probability 6= Counting

Thought experiment: what is a good estimate of P(H) in each
case?

1 I pick up a coin off the street, and start flipping.

a. Flip 10 times: 4T, 6H.
b. Flip 100 times: 40T, 60H.

2 I have a coin in my pocket, and I tell you it’s weighted. I pull
it out and start flipping.

a. Flip 10 times: 4T, 6H.
b. Flip 100 times: 40T, 60H.
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Frequentist Statistics

Standard frequentist statistics strives to be objective. Interprets
probabilities as proportions of infinite number of trials.

Probabilities are estimated from repeated observations.

More observations → more accurate estimation.

Focuses on ruling out hypotheses, not estimating their
probabilities.

Ex: Data = (3T, 7H). Estimate P(H) = .7, but margin for
error is large, does not rule out P(H) = .5.

Used widely in controlled scientific experiments.
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Bayesian Statistics

Bayesian interpretation of probabilities is that they reflect degrees
of belief , not frequencies.

Belief can be influenced by frequencies: observing many
outcomes changes one’s belief about future outcomes.

Belief can be influenced by other factors: structural
assumptions, knowledge of similar cases, complexity of
hypotheses, etc.

Hypotheses can be assigned probabilities.

Works much better for cognitive modeling.
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Bayes’ Theorem, Again

Bayesian interpretation of Bayes’ theorem:

Bayes’ Theorem

P(h|D) =
P(D|h)P(h)

P(D)

P(h): prior probability reflects plausibility of h regardless of data.
P(D|h): likelihood reflects how well h explains the data.
P(h|D): posterior probability reflects plausibility of h after taking
data into account.

Note that P(h) may differ from the “base rate” (which implies
simply counting).
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Discussion

Reconsider modeling and experimental evidence:

Cooper’s model fails not because of Bayes’ rule, but because
probabilities are equated with relative frequencies.

Similarly, evidence of base rate neglect fails to consider factors
besides frequency that might affect prior probabilities.

Next class: more detail on Bayesian methods and relationships
to cognitive modeling.
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Summary

Bayes’ theorem can be applied to human decision making;

early experimental results seemed to indicate that subjects
ignore prior probabilities: base rate neglect;

however, more recent studies show that subject can learn base
rate information from experience;

rational analysis using Bayesian view suggests that equating
probabilities with relative frequencies is the problem;

subjects may use additional information to determine prior
probabilities.
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