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Reading: Manning and Schütze (1999: Ch. 2).
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Terminology

Terminology for probability theory:

experiment: process of observation or measurement; e.g., coin
flip;

outcome: result obtained through an experiments; e.g., coin
shows tail;

sample space: set of all possible outcomes of an experiment;
e.g., sample space for coin flip: S = {H,T}.

Sample spaces can be finite or infinite.
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Terminology

Example: Finite Sample Space

Roll two dice, each with numbers 1–6. Sample space:

S1 = {(x , y)|x = 1, 2, . . . , 6; y = 1, 2, . . . , 6}

Alternative sample space for this experiment: sum of the dice:

S2 = {x |x = 2, 3, . . . , 12}

Example: Infinite Sample Space

Flip a coin until head appears for the first time:

S3 = {H,TH,TTH,TTTH,TTTTH, . . . }
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Events

Often we are not interested in individual outcomes, but in events.
An event is a subset of a sample space.

Example

With respect to S1, describe the event B of rolling a total of 7
with the two dice.

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
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Events

The event B can be represented graphically:
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Events

Often we are interested in combinations of two or more events.
This can be represented using set theoretic operations. Assume a
sample space S and two events A and B:

complement Ā (also A′): all elements of S that are not in A;

subset A ⊂ B: all elements of A are also elements of B;

union A ∪ B: all elements of S that are in A or B;

intersection A ∩ B: all elements of S that are in A and B.

These operations can be represented graphically using Venn
diagrams.
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Venn Diagrams

A

B A

Ā A ⊂ B

BA A B

A ∪ B A ∩ B
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Axioms of Probability

Events are denoted by capital letters A,B,C , etc. The probability
of and event A is denoted by P(A).

Axioms of Probability

1 The probability of an event is a nonnegative real number:
P(A) ≥ 0 for any A ⊂ S .

2 P(S) = 1.

3 If A1,A2,A3, . . . , is a sequence of mutually exclusive events of
S , then:

P(A1 ∪ A2 ∪ A3 ∪ . . . ) = P(A1) + P(A2) + P(A3) + . . .
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Probability of an Event

Theorem: Probability of an Event

If A is an event in a sample space S and O1,O2, . . . ,On, are the
individual outcomes comprising A, then P(A) =

∑n
i=1 P(Oi )

Example

Assume all strings of three lowercase letters are equally probable.
Then what’s the probability of a string of three vowels?

There are 26 letters, of which 5 are vowels. So there are N = 263

three letter strings, and n = 53 consisting only of vowels. Each
outcome (string) is equally likely, with probability 1

N , so event A (a

string of three vowels) has probability P(A) = n
N = 53

263 = 0.00711.
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Rules of Probability

Theorems: Rules of Probability

1 If A and Ā are complementary events in the sample space S ,
then P(Ā) = 1− P(A).

2 P(∅) = 0 for any sample space S .

3 If A and B are events in a sample space S and A ⊂ B, then
P(A) ≤ P(B).

4 0 ≤ P(A) ≤ 1 for any event A.
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Addition Rule

Axiom 3 allows us to add the probabilities of mutually exclusive
events. What about events that are not mutually exclusive?

Theorem: General Addition Rule

If A and B are two events in a sample space S , then:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Ex: A = “has glasses”, B = “is blond”.
P(A) + P(B) counts blondes with glasses
twice, need to subtract once. A B
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Conditional Probability

Definition: Conditional Probability, Joint Probability

If A and B are two events in a sample space S , and P(A) 6= 0 then
the conditional probability of B given A is:

P(B|A) =
P(A ∩ B)

P(A)

P(A ∩ B) is the joint probability of A and B, also written P(A,B).

Intuitively, P(B|A) is the probability that B
will occur given that A has occurred.
Ex: The probability of being blond given
that one wears glasses: P(blond|glasses).

A B
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Conditional Probability

Example

Consider sampling an adjacent pair of words (bigram) from a large
text. Let A = (first word is run), B = (second word is amok).

If P(A) = 10−3.5, P(B) = 10−5.6, and P(A,B) = 10−6.5, what is
the probability of seeing amok following run? Run preceding amok?

P(run before amok) = P(A|B) =
P(A,B)

P(B)
=

10−6.5

10−5.6
= .126

P(amok after run) = P(B|A) =
P(A,B)

P(A)
=

10−6.5

10−3.5
= .001

To consider: how do we determine P(A), P(B), P(A,B) in the
first place?
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Conditional Probability

From the definition of conditional probability, we obtain:

Theorem: Multiplication Rule

If A and B are two events in a sample space S , and P(A) 6= 0 then:

P(A,B) = P(A)P(B|A)

As A ∩ B = B ∩ A, it follows also that:

P(A,B) = P(A|B)P(B)
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Independence

Definition: Independent Events

Two events A and B are independent if and only if:

P(A,B) = P(A)P(B)

Intuition: two events are independent if knowing whether one event
occurred does not change the probability of the other.

Note that the following are equivalent:

P(A,B) = P(A)P(B) (1)

P(A|B) = P(A) (2)

P(B|A) = P(B) (3)
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Independence

Example

A coin is flipped three times. Each of the eight outcomes is equally likely.
A: head occurs on each of the first two flips, B: tail occurs on the third
flip, C : exactly two tails occur in the three flips. Show that A and B are
independent, B and C dependent.

A = {HHH,HHT} P(A) = 1
4

B = {HHT ,HTT ,THT ,TTT} P(A) = 1
2

C = {HTT ,THT ,TTH} P(C ) = 3
8

A ∩ B = {HHT} P(A ∩ B) = 1
8

B ∩ C = {HTT ,THT} P(B ∩ C ) = 1
4

P(A)P(B) = 1
4 ·

1
2 = 1

8 = P(A ∩ B), hence A and B are independent.
P(B)P(C ) = 1

2 ·
3
8 = 3

16 6= P(B ∩ C ), hence B and C are dependent.
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Conditional Independence

Definition: Conditionally Independent Events

Two events A and B are conditionally independent given event C
if and only if:

P(A,B|C ) = P(A|C )P(B|C )

Intuition: Once we know whether C occurred, knowing about A or
B doesn’t change the probability of the other.

Example: A = “vomiting”, B = “fever”, C = “food poisoning”.

Exercise

Show that the following are equivalent:

P(A, B|C) = P(A|C)P(B|C) (4)

P(A|B, C) = P(A|C) (5)

P(B|A, C) = P(B|C) (6)
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Total Probability

Theorem: Rule of Total Probability

If events B1,B2, . . . ,Bk constitute a partition of the sample space
S and P(Bi ) 6= 0 for i = 1, 2, . . . , k, then for any event A in S :

P(A) =
k∑

i=1

P(Bi )P(A|Bi )

B1,B2, . . . ,Bk form a
partition of S if they are
pairwise mutually exclusive
and if B1∪B2∪ . . .∪Bk = S .

B
B B

B

B B
B

1

2

3 4

5

6

7
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Example

In an experiment on human memory, participants have to
memorize a set of words (B1), numbers (B2), and pictures (B3).
These occur in the experiment with the probabilities P(B1) = 0.5,
P(B2) = 0.4, P(B3) = 0.1.

Then participants have to recall the items (where A is the recall
event). The results show that P(A|B1) = 0.4, P(A|B2) = 0.2,
P(A|B3) = 0.1. Compute P(A), the probability of recalling an item.

By the theorem of total probability:

P(A) =
∑k

i=1 P(Bi )P(A|Bi )
= P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3)
= 0.5 · 0.4 + 0.4 · 0.2 + 0.1 · 0.1 = 0.29
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Bayes’ Theorem

P(B|A) =
P(A|B)P(B)

P(A)

(Derived using mult. rule: P(A,B) = P(A|B)P(B) = P(B|A)P(A))

Denominator can be computed using theorem of total
probability: P(A) =

∑k
i=1 P(Bi )P(A|Bi ).

Denominator is a normalizing constant (ensures P(B|A) sums
to one). If we only care about relative sizes of probabilities, we
can ignore it: P(B|A) ∝ P(A|B)P(B).
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Bayes’ Theorem

Example

Reconsider the memory example. What is the probability that an
item that is correctly recalled (A) is a picture (B3)?

By Bayes’ theorem:

P(B3|A) = P(B3)P(A|B3)Pk
i=1 P(Bi )P(A|Bi )

= 0.1·0.1
0.29 = 0.0345

The process of computing P(B|A) from P(A|B) is sometimes
called Bayesian inversion.
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Manipulating Probabilities

In Anderson’s (1990) memory model, A is the event that some item
is needed from memory. Assumes A depends on contextual cues Q
and usage history HA, but Q is independent of HA given A.

Show that P(A|HA,Q) ∝ P(A|HA)P(Q|A).

Solution:

P(A|HA,Q) =
P(A,HA,Q)

P(HA,Q)

=
P(Q|A,HA)P(A|HA)P(HA)

P(Q|HA)P(HA)

=
P(Q|A,HA)P(A|HA)

P(Q|HA)

=
P(Q|A)P(A|HA)

P(Q|HA)

∝ P(Q|A)P(A|HA)
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Random Variables

Definition: Random Variable

If S is a sample space with a probability measure and X is a
real-valued function defined over the elements of S , then X is
called a random variable.

We will denote random variable by capital letters (e.g., X ), and
their values by lower-case letters (e.g., x).

Example

Given an experiment in which we roll a pair of dice, let the random
variable X be the total number of points rolled with the two dice.

For example X = 7 picks out the set
{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.
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Random Variables

Example

Assume a balanced coin is flipped three times. Let X be the
random variable denoting the total number of heads obtained.

Outcome Probability x

HHH 1
8 3

HHT 1
8 2

HTH 1
8 2

THH 1
8 2

Outcome Probability x

TTH 1
8 1

THT 1
8 1

HTT 1
8 1

TTT 1
8 0

Hence, P(X = 0) = 1
8 , P(X = 1) = P(X = 2) = 3

8 ,
P(X = 3) = 1

8 .
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Probability Distributions

Definition: Probability Distribution

If X is a random variable, the function f (x) whose value is
P(X = x) for each x within the range of X is called the probability
distribution of X .

Example

For the probability function defined in the previous example:

x f (x)

0 1
8

1 3
8

2 3
8

3 1
8
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Probability Distributions

A probability distribution is often represented as a probability
histogram. For the previous example:

0 1 2 3
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)
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Distributions over Infinite Sets

Example: geometric distribution

Let X be the number of coin flips needed before getting heads,
where ph is the probability of heads on a single flip. What is the
distribution of X?

Assume flips are independent, so P(T n−1H) = P(T )n−1P(H).
Therefore, P(X = n) = (1− ph)

n−1ph.
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Expectation

The notion of mathematical expectation derives from games of
chance. It’s the product of the amount a player can win and the
probability of wining.

Example

In a raffle, there are 10,000 tickets. The probability of winning is
therefore 1

10,000 for each ticket. The prize is worth $4,800. Hence

the expectation per ticket is $4,800
10,000 = $0.48.

In this example, the expectation can be thought of as the average
win per ticket.
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Expectation

This intuition can be formalized as the expected value (or mean)
of a random variable:

Definition: Expected Value

If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of X is:

E (X ) =
∑
x

x · f (x)
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Expectation

Example

A balanced coin is flipped three times. Let X be the number of
heads. Then the probability distribution of X is:

f (x) =


1
8 for x = 0
3
8 for x = 1
3
8 for x = 2
1
8 for x = 3

The expected value of X is:

E (X ) =
∑
x

x · f (x) = 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2
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Expectation

The notion of expectation can be generalized to cases in which a
function g(X ) is applied to a random variable X .

Theorem: Expected Value of a Function

If X is a random variable and f (x) is the value of its probability
distribution at x , then the expected value of g(X ) is:

E [g(X )] =
∑
x

g(x)f (x)
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Expectation

Example

Let X be the number of points rolled with a balanced die. Find the
expected value of X and of g(X ) = 2X 2 + 1.

The probability distribution for X is f (x) = 1
6 . Therefore:

E (X ) =
∑
x

x · f (x) =
6∑

x=1

x · 1

6
=

21

6

E [g(X )] =
∑
x

g(x)f (x) =
6∑

x=1

(2x2 + 1)
1

6
=

94

6
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Summary

Sample space S contains all possible outcomes of an
experiment; events A and B are subsets of S .

rules of probability: P(Ā) = 1− P(A).
if A ⊂ B, then P(A) ≤ P(B).
0 ≤ P(B) ≤ 1.

addition rule: P(A ∪ B) = P(A) + P(B)− P(A,B).

conditional probability: P(B|A) = P(A,B)
P(A) .

independence: P(B,A) = P(A)P(B).

total probability: P(A) =
∑

Bi
P(Bi )P(A|Bi ).

Bayes’ theorem: P(B|A) = P(B)P(A|B)
P(A) .

a random variable picks out a subset of the sample space.

a distribution returns a probability for each value of a RV.

the expected value of a RV is its average value over a
distribution.
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