
1

A Bugs Life

Computer Literacy 1 Lecture 16
27/10/2008

Topics
 Bugs

 Definition
 Examples

 Algorithms
 Foundation of computer programs
 All applications are programs

 Software design
 Minimising the impact of bugs
 Minimising human error

Computer bug
 Unwanted property of program code or

hardware
 Especially when it causes a malfunction
 Bugs are common

 In Windows 98 Microsoft supposedly fixed 3000
bugs

 In 2000 a leaked memo from Microsoft revealed
that Windows 2000 was released with 20,000
bugs

 Bugs can be unwanted security holes

Early bug: IEFBR14
 IEFBR14: One line of code for an IBM

mainframe computer used in the 70’s
 Instruction of code:
 “Do nothing” (e.g. wait for a short time)
 Contained a bug!

 Forgot to prepare the memory for the next
instruction

 Subsequent instructions go wrong

2

Bugs: Patriot missile
 Error calculating time since the computer

booted
 Binary representation of 0.1 seconds limited

to 24 bits
 Once activated, navigation system drifts
 Gulf War in 1991
 Caused a patriot missile to fail to intercept a

Scud missile
 28 people were killed and 100 injured

Computer programs

 Computers are excellent at following
instructions
 Follow your command literally
 Can solve problems quickly

 Major difficulties are
 Expressing problems that can be solved by

efficient algorithms
 Giving the computer the correct instructions
 Making the program user friendly

Bugs in programs
 Memory leak

 Forget to release memory after it had been used (e.g.
IEFBR14)

 Other easy/common mistakes
 Variable not set to the right initial value
 Loops that never ends

 Spelling mistakes
 Usually prevented by the code not compiling
 Not always (Mariner 1)

Bugs: Ariane 5 flight 501
 Cost

 $500 million of satellites on board
 The bug

 “Type conversion error”
 A 64-bit number was converted in a 16-bit number
 The value of horizontal position was lost
 Ariane self-destructs correctly

 The error
 Code not meant for that flight?

3

Ariane 5 Flight 501

 http://www.youtube.com/watch?v=IONcgYzV
Flg

 Year was 1996

Software bug halts F-22 Flight

 On February 11, 2007 twelve raptors flying
from Hawaii to Japan were forced to turn
back because of a software glitch

 Their computers crashed when they crossed
the international date line!

 They had to turn around an follow their
tankers by visual contact back to Hawaii

Less dramatic but happened

 On August 28, 1993, 2a.m. clocks in some
PCs in Israel are suddenly loosing an hour

 On October 24, 1993, at 2a.m. some PCs in
the UK don’t turn back their clocks like they
were supposed to

Mariner 1

 Mariner 1 should have been an spacecraft on
a Venus flyby mission

 Instead a security officer called its destructive
abort 293 seconds after its launch

 It’s claimed that the bug was a single sign in
the code that was wrong:

DO 17 I = 1.100 should have been
DO 17 I = 1,100

4

Remember

 Ariane: Program was doing the right thing in
the wrong rocket - error in requirement

 Change from summer to winter-time:
Program was correctly doing the wrong thing
- error in specification

 F-22, Mariner: Programme(r) made a
mistake - error in implementation

Software design process

 Requirements: statement of the problem
 Validation

 Specification: statement of what to do
 Verification

 Implementation: doing it
 Design, Testing

When it all goes wrong

 Fault - an error lurking in the program

 Error - fault is triggered

 Failure - program takes inapproriate action
as a result

Fault tolerant systems

 Creating fault free systems
 Difficult and time-consuming

 Fault tolerant systems operate successfully
despite faults

 Software:
 Keep multiple copies of (back-up) the data
 Identify and monitor critical variables
 Checkpointing: reset system to a stored set of

values

5

Software design: Waterfall
model

 Analyse the problem:
 Design solution architecture
 Design solution details
 Write program code
 Test code
 Maintain code

Iterative design model
 At each stage

 Design  Prototype  Evaluate  Redesign
 All stages developed concurrently, with feedback between

all stages
 Advantages

 User-defined from start
 Performance can be measured much earlier

 Problems
 Time consuming
 Requires good management

Beta testing

 Refers to 2nd phase of software testing
 Sample of intended audience test the product
 It works for the programmer, does it work for the

user?
 Provides a “preview” of software

 Dedicated website: www.betanews.com

IT systems development
 Difficult initial problem analysis

 IT systems supplement existing practice
 Easy to be over-ambitious
 Goals can change
 Practical difficulty of establishing user’s goals

 Changing technology
 Technology is quickly obsolete
 Limited experience with new technology

 Complexity
 Large programs use ~100,000 of code
 High staff turnover

6

During the implementation
 Monitoring calls with business
 Schedule of events checking
 Formal checkpoints
 Business checkout
 Incident management. Formal control of any

problems
 Go / No Go decision
 Ensure all in place for staff to use

Post implementation
 Analysis of any problem

 What was their problem?
 What was done to resolve them?
 Are any further fixes needed?

 Monitoring of ongoing system performance
 Are the transactions being processed correctly?

 How is the business getting on with the system?
 Has it been well received?
 Is everyone able to use it easily?
 Any further action needed?

London Ambulance Fiasco
1992
 The London Ambulance (LAS) Computer Aided

Dispatch failed dramatically on October 26 1992
shortly after it was introduced
 The system could not cope with the load placed on it by

normal use
 The response to emergency calls was several hours
 Ambulance communications failed and ambulances were

lost from the system

LAS Fiasco

 A series of errors were made in the
procurement, design, implementation, and
introduction of the system.
 There appears to have been NO backup

procedure at all
 Design of user interface was inadequate
 No consideration was given to system overload

7

Key points

 Bugs result from human-computer
interactions

 There are many causes
 Techniques exist to try and control the effects

of bugs
 Changes need planning

