
The halting problem

INSTANCE: A binary Turing machine M , and

an input x ∈ {0, 1}∗.

QUESTION: Does M halt on input x?

What we will do:

1. Make this question precise by phrasing it

as a language recognition problem.

2. Show that the language is not recognized

by any TM.

3. For amusement, produce a function with a

mind blowing growth rate.

58

Recall: For every Turing machine M with in-

put alphabet {0, 1}, there is a binary Turing

machine M̂ that is equivalent to M : on every

input, M̂ halts if and only if M halts, and M̂

accepts if and only if M accepts. (Note: tape

alphabet of M is unrestricted.)

Example: TM M with

Σ = { 0, 1 }
Γ = { 0, 1, $, # }.

Encode:

0 1 $ # b̄
↓ ↓ ↓ ↓ ↓
00 01 10 11 b̄ b̄

Simulate M by machine M̂ with input alphabet

{ 0, 1 } and tape alphabet { 0, 1, b̄ }.

59

M , M̂ get same input:

0 1 1 0 b̄ · · ·

M̂ first encodes input and then simulates M :

(i) Mark first square for later:

b̄ 0 1 1 0 b̄ · · ·

(ii) Encode each symbol by using repeated

right shifts:

b̄ 0 0 0 1 0 1 0 0 b̄ · · ·

(iii) Shift left at the end:

0 0 0 1 0 1 0 0 b̄ · · ·
∧

Now simulate M by doing everything in blocks

of 2:

• 2 steps to read,

• 2 steps to write.

60

Recall: Encodings of binary TMs presented to
UTM in format

0001011*0010111*01B1010*1000111

Use of * and B is to help us, machines couldn’t
care less.

Encode as a binary string by mapping:

0 1 B *

↓ ↓ ↓ ↓
00 01 10 11

Now

0001011*0010111*01B1010*1000111→
000000010001011100000100010101

11000110010001001101000000010101

What’s the point? Encodings of TMs now
look the same as inputs to TMs (‘programs as
data’).

Note: We insist that final state is given binary
code for 1.

61

Halting problem as language recognition:

For binary TM M use 〈M〉 to denote its en-

coding as a binary string.

Define Lhalt ⊂ { 0, 1, $ } by:

Lhalt = {〈M〉$x | x ∈ {0, 1}∗ and

M halts on input x}.

Note: Lots of words fail to be in Lhalt be-

cause they are badly formatted; obviously we

can recognize these (by a TM).

LEMMA The language Lhalt is recursively enu-

merable.

Gives a semi-decision procedure.

62

Most important result result of this mod-

ule:

THEOREM The language Lhalt is not recur-

sive.

Dashes all hope of finding a decision procedure

for the halting problem.

PROOF Suppose Lhalt is recursive; so there

is a TM Mhope that:

1. halts on all inputs,

2. accepts its input if and only if it is of form

〈M〉$x and machine M halts on input x.

We will derive a contradiction.

63

64

65

Mdiag has input alphabet { 0, 1 }. Transform

it to equivalent binary TM Mliar with binary

encoding 〈Mliar〉.

Now run Mliar on its own description:

Mliar halts on input 〈Mliar〉
⇐⇒ Mhope rejects 〈Mliar〉$〈Mliar〉
⇐⇒ Mliar does not halt on input 〈Mliar〉.

A contradiction!

Conclusion: Mhope does not exist, i.e., Lhalt

is not recursive.

Note: Constructive nature of proof.

66

An explosive function: M a binary TM, x ∈
{0, 1}∗ an input to M .

T (M, x) =
{
no. of transitions if M halts on x,

undefined otherwise.
Define f : N → N by:

f(n) =


0 if n = 0,

max {T (M, x) |
M halts on input x

and 〈M〉$x has length n} if n > 0.

Note: f is a perfectly well defined total func-

tion:

• given n > 0 have only finitely many 〈M〉$x
of length n and at least one always halts (the

empty machine).

67

Question: Is there a TM transducer that com-

putes f?

Suppose there is, call it Mf . Then can solve

halting problem as follows (using a 2-tape TM).

Given M and input x:

1. Work out length of input, say n, and write

it on second tape.

2. Use Mf to compute f(n) on the second

tape.

3. Simulate M on x for at most f(n) transi-

tions. If M halts then halt and accept else

halt and reject (if M doesn’t halt within

f(n) steps it’s not going to halt anyway).

68

Suppose g : N → N is any other function such

that

g(n) ≥ f(n), for all n ∈ N.

Similar argument shows g is not computable.

Conclusion: f grows faster than every com-

putable function!

69

