
Random Access Machines (RAMs)

34

Syntax of Ram programs:

program = instruction program | instruction

instruction = [label :] (accept

| reject
| read l value

| l value := r value arithmetic op r value

| if r value relational op r value goto label)

l value = 'integer | " integer

r value = integer | 'integer | " integer

arithmetic op = + | - | * | div
relational op = = | <> | <= | <

label = alphanumeric sequence.

35

Semantics of RAM programs:

• Infinitely many registers.
• Each register indexed by integer address.
• Initially all registers contain 0.
• Input is a stream of integers.

Instruction counter says which instruction to
execute next (number them from 0 onwards).

State of the RAM: formally a function

s : Z → Z
For every integer i,

s(i) = contents of register i.

Note: s(i) = 0 for all but finitely many i.

At each step, state of machine and instruction
counter are updated.

〈state, instruction counter〉 play role of config-
uration in Turing machine model.

36

l-values and r-values: L, R respectively,

• L evaluates to an address a.

• R evaluates to a value v.

In context s (the state):

a =
{

k if L = 'k,

s(k) if L = "k.

v =


k if R = k,

s(k) if R = 'k,

s(s(k)) if R = "k.

· · · 10 · · · 12 2 0 · · · 6 · · · −5 · · ·

−5 0 1 10 24

If k = 24:

• as an l-value: 'k = 24, "k = −5,

• as an r-value: 'k = −5, "k = 10.

37

Recognizing languages:

Given alphabet Σ, encode as 1,2,3, . . . , |Σ|.

Encode b̄ (end of input) by 0.

Example:

Σ = { a, b, 0, 1, $ }
↓ ↓ ↓ ↓ ↓

Code 1, 2, 3, 4, 5

As given, RAMs don’t compute functions, but

could just add a write instruction.

38

Example: A RAM that accepts {anbn | n ∈ N}.

Slight nuisance: RAMs only read integers.

• Just replace a by 1 and b by 2, language is

now {1n2n | n ∈ N}.

High level description of algorithm:

count := 0
while input is a 1

count := count + 1
while not at end of input

if input is a 2
count := count− 1

else
reject

if count = 0
accept

else
reject

39

RAM program: hold count in register 0, read

current input into register 1.

start: read '1
if '1 = 1 goto ones

if '1 = 2 goto twos

if '1 = 0 goto check

if 0 = 0 goto no

ones: '0 = '0 + 1
if 0 = 0 goto start

twos: '0 = '0− 1
read '1
if '1 = 2 goto twos

if '1 = 0 goto check

if 0 = 0 goto no

check: if '0 = 0 goto yes

no: reject

yes: accept

40

Palindromes:

'1 := 2
next symbol: read "1

if "1 = 0 goto end of input

'1 := '1 + 1
if 0 = 0 goto next symbol

end of input: '1 := '1 - 1
'0 := 2

loop: if '1 <= '0 goto yes
if "0 <> "1 goto no
'0 := '0 + 1
'1 := '1 - 1
if 0 = 0 goto loop

yes: accept
no: reject

41

Bounded RAMs: Only difference is that reg-

isters restricted to contain integers in some

bounded range {−N,−N + 1, . . . , N − 1, N}.

Obvious fact: Bounded RAMs are no more

powerful than standard ones.

Question: What about the converse?

Fact: Bounded RAMs cannot recognize palin-

dromes, so they are less powerful than RAMs.

42

Equivalence of Turing machines and RAMs:

THEOREM Let L be a language over some

alphabet Σ. If there is a RAM that accepts L,

then there is a Turing machine that also ac-

cepts L.

Three-register RAMs: Just three registers,

v−1 v0 v1

−1 0 1

State is a function from {−1,0,1} → Z.

• only l values allowed are '-1, '0, and '1;

• only r values allowed are '-1, '0, '1, and

signed decimal constants;

• ‘indirect addressing’ forbidden.

THEOREM Let L be a language over some

alphabet Σ. If there is a Turing machine that

accepts L, then there is a three-register RAM

that also accepts L.

43

Recursively enumerable languages:

• CTM denotes class of languages that are

accepted by some Turing machine, i.e.,

CTM = {L(M) | M is a Turing machine}.

• CRAM denotes similar class for RAMs.

• C3RAM denotes similar class for three-register

RAMs.

Theorems above show

CTM = CRAM = C3RAM.

(Tacit assumption: we have fixed a common

alphabet.)

Languages in CTM called recursively enumer-

able (usually abbreviated to r.e.).

44

