
UG3 Computability and Intractability (2009-2010): Note 3

§3. The Turing machine. In this note we introduce Turing’s formal model
of computing; there are many possible variations. Informally, a Turing machine
consists of a tape, a head which ‘scans’ the tape, and a finite control. The tape
is a linear sequence of squares, each of which contains one of a finite number of
distinct symbols. The tape has a definite left hand end, but is unbounded to the
right. There is a special symbol called the blank symbol ; at any instant during the
computation of a Turing machine, all but a finite number of tape squares contain
the blank symbol. (So the existence of an unbounded tape should not worry us
unduly: it represents a potential rather than actual infinity.) At any time instant,
the head scans (or is positioned over) a particular tape square.

The Turing machine starts with some input written on the squares of the tape,
with the head positioned over the leftmost tape square. The machine then makes
a sequence of moves or transitions. A move of the Turing machine is determined
by the symbol s scanned by the tape head, and the current state q of the finite
control. For some pairs (q, s) no move is defined; in this case the machine halts and
is deemed to have rejected its input unless q is the final state as described below.
If a move is defined for the pair (q, s), the machine undergoes three changes:

1. the finite control assumes a new state;

2. the head prints a symbol on the scanned tape square, overwriting whatever
was previously there;

3. the head is moved one square left or right.

A certain state of the finite control is designated the accepting or final state; when
the machine enters this state it immediately halts and is deemed to have accepted
its input.

To avoid any possible misunderstandings, and to emphasize the point that the
computational process described above is well defined and perfectly mechanical, we
shall now present a more formal definition of the Turing machine. (As the course
progresses, and we become more familiar with the model, much of this formality
may safely be dropped. There is no intrinsic merit in formality.)

A Turing machine is described by a 7-tuple M = (Q, Γ, Σ, b̄ , qI , qF , δ), where

Q is a finite set of states,

Γ is a finite tape alphabet,

Σ ⊂ Γ is the input alphabet,

b̄ ∈ Γ− Σ is the blank symbol,

qI ∈ Q is the initial state,

qF ∈ Q is the final state,
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and δ is the transition function, which is a partial function mapping Q × Γ to
Q× Γ× {L, R}. (L and R can be interpreted as left and right, respectively.)

The disposition of the machine M at any instant is completely described by
the sequence αqβ, where q ∈ Q is the current state of M , α ∈ Γ∗ is the finite
sequence of tape symbols reading from the left hand end of the tape up to but
not including the scanned symbol, and β is the infinite sequence of tape symbols
starting at the scanned symbol and reading to the right. Note that the sequence α
may be empty (corresponding to the head being positioned over the leftmost tape
square). We shall temporarily refer to the infinite sequence αqβ so derived as the
configuration12 of M .

We now define a move of the machine M . Let

x1, x2, . . . , xi−1, q, xi, xi+1, xi+2, . . .

be a configuration of M . If the (partial) function δ is not defined on the pair (q, xi)
then the machine halts. If δ(q, xi) is defined, and is equal to (q′, y, R), then the
new configuration of M after a single move is

x1, x2, . . . , xi−1, y, q′, xi+1, xi+2, . . . .

Finally suppose δ(q, xi) = (q′, y, L). If i = 1, the machine M halts and rejects.
(The head is not allowed to drop off the left hand end of the tape.) Otherwise the
new configuration of M is

x1, x2, . . . , xi−2, q
′, xi−1, y, xi+1, xi+2, . . . .

Now observe that the infinite sequence γ = αqβ, which we have been referring
to as a configuration of M , contains only a finite number of non-blank symbols.
Thus, γ may be truncated to a finite sequence, without any loss of information,
simply by stripping away all trailing blanks. From now on, the term configuration
will be used exclusively to refer to the finite sequence obtained from γ in this way.

If γ0 and γ1 are configurations of M , then we write γ0 ` γ1 if γ1 follows from
γ0 via a single move, and γ0 `∗ γ1 if γ1 can be reached from γ0 via some finite
(possibly empty) sequence of moves. The language accepted by M , denoted by
L(M), is the set of all words x ∈ Σ∗ such that M , when run with x as input,
eventually enters the accepting state. Formally,

L(M) = {x ∈ Σ∗ | qIx `∗ αqF β, where α, β ∈ Γ∗}.
12These ‘configurations’ should not be confused with the ‘m-configurations’ defined in the

extract from Turing’s paper given in Note 2. The latter correspond instead to states, q ∈ Q,
of what we have called the ‘finite control’. Hence there are only a finite number of possible
m-configurations but infinitely many configurations.
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The computation of M on input x is the sequence of configurations γ0, γ1, γ2, . . . ,
where γ0 = qIx and γi ` γi+1 for each i. A computation may be finite (terminating)
or infinite (non-terminating). This completes the formal definition of a Turing
machine. As a final convention however we will assume that the transition function
is never defined for any pair (qF , s) where s is any tape symbol (i.e., if qF is reached
there is no instruction for a next move as will be seen below).

It is convenient to establish some conventions for writing down the transition
function of a Turing machine M . Two conventions are commonly employed. In
the first, the transition function δ is presented as a list of quintuples. For each
pair (q, s) ∈ Q× Γ there is at most one quintuple of the form (q, s, q′, s′, d) where
(q′, s′, d) ∈ Q × Γ × {L, R}. If no such quintuple exists, then δ(q, s) is undefined;
otherwise, δ(q, s) = (q′, s′, d). The second convention represents the transition
function as a directed multigraph13 on vertex set Q, whose edges are labelled by
triples. The presence of a directed edge from vertex q to vertex q′ with label
(s, s′, d) ∈ Γ × Γ × {L, R} denotes the fact that δ(q, s) = (q′, s′, d). Again, for
each q and s there can be at most one such edge.

Example Consider the machine Mpalin with Q = {q0, q1, . . . , q6}, qI = q0, qF = q6,
Σ = {0, 1}, Γ = {0, 1, b̄}, and with transition function specified by the set of
quintuples

{ (q0, b̄ , q6, b̄ , R), (q0, 0, q1, b̄ , R), (q0, 1, q3, b̄ , R),
(q1, b̄ , q2, b̄ , L), (q1, 0, q1, 0, R), (q1, 1, q1, 1, R),
(q2, b̄ , q6, b̄ , R), (q2, 0, q5, b̄ , L),
(q3, b̄ , q4, b̄ , L), (q3, 0, q3, 0, R), (q3, 1, q3, 1, R),
(q4, b̄ , q6, b̄ , R), (q4, 1, q5, b̄ , L),
(q5, b̄ , q0, b̄ , R), (q5, 0, q5, 0, L), (q5, 1, q5, 1, L) }.

The language accepted by Mpalin is the set of all palindromes in {0, 1}∗. A typical
accepting computation of Mpalin is the following, where the input is the palindrome
0110:

q00110 ` b̄q1110 ` b̄1q110 ` b̄11q10 ` b̄110q1 `
b̄11q20 ` b̄1q51 ` b̄q511 ` q5 b̄11 ` b̄q011 `
b̄ b̄q31 ` b̄ b̄1q3 ` b̄ b̄q41 ` b̄q5 ` b̄ b̄q0 ` b̄ b̄ b̄q6.

A typical rejecting computation of Mpalin is the following, where the input is the
non-palindrome 0111:

q00111 ` b̄q1111 ` b̄1q111 ` b̄11q11 ` b̄111q1 ` b̄11q21.

Exercises (i) Present the transition function of Mpalin as a directed multigraph.
(ii) Follow the computation of Mpalin on a palindrome of odd length and a non-
palindrome of odd length. (iii) Give an informal inductive argument that L(Mpalin)
is the language of all palindromes over the alphabet {0, 1}.

13In a multigraph, several edges may share the same start and end vertices.
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We have so far viewed Turing machines as accepters of languages over the alpha-
bet Σ or, equivalently, as computers of predicates on Σ∗. We can also use Turing
machines to compute more general functions, from Σ∗ to Σ∗. If the machine halts
on a given input string then we regard whatever appears on the final tape from the
left most square up to (but not including) the first symbol not from Σ as the result
of the computation; if the machine does not halt then the function is undefined for
the given input string. A Turing machine which is used in this mode is called a
transducer. Note that the function computed by a transducer is a partial function
since the transducer may not halt on all inputs, indeed it might not halt on any
input. (Recall that, as we saw in §1.3, the possibility of non-termination is an
inherent feature of any general method of computing.)

Example Consider the machine Mdiv3 with Q = {q0, q1, q2, q3}, qI = q0, qF = q3,
Σ = {0, 1}, Γ = {0, 1, b̄}, and with transition function specified by the set of
quintuples

{ (q0, b̄ , q3, b̄ , R), (q0, 0, q0, 0, R), (q0, 1, q1, 0, R),
(q1, b̄ , q3, b̄ , R), (q1, 0, q2, 0, R), (q1, 1, q0, 1, R),
(q2, b̄ , q3, b̄ , R), (q2, 0, q1, 1, R), (q2, 1, q2, 1, R) }.

On input x ∈ {0, 1}∗, the machine Mdiv3 computes y = bx/3c, where x and y
are both interpreted as binary integers. A typical computation of Mdiv3 is the
following, where the input is 10100, i.e., 20 in binary:

q010100 ` 0q10100 ` 00q2100 `
001q200 ` 0011q10 ` 00110q2 ` 00110 b̄q3.

Exercise Provide an interpretation for the states q0, q1, and q2.

Finally, the machine that is described in the final paragraph of the quotation
of Note 2 is very close to the Turing machine defined here. The main difference is
that the machine described by Turing can observe B squares simultaneously (i.e.,
has B heads) and can move each head through L squares in a single move. Clearly
we have simplified the definitions by setting L and B to be 1. (The machine has
one head which can move one square in a single move.) We shall argue later that
this simplification leads to no loss of generality: a machine with one head moving
one square at a time can do the work of a machine with B heads moving L squares
at a time, albeit more slowly.
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