
UG3 Computability and Intractability (2009-2010): Note 2

§2. Turing’s Thesis. As observed in Note 1, during the time when the funda-
mentals of computability were formulated a number of models were proposed with
the aim of formalizing the notion of effective procedure, the Turing machine being
one (we will give a formal definition8 in Note 3). This is such a simple model
that we can have little doubt that all procedures that can be defined within it are
effective in the algorithmic sense. However, the very simplicity of the model also
leads us to question whether all the procedures that we would intuitively regard
as effective can be described by Turing machines. Perhaps the model is too simple.
Perhaps a modern programming language, such as Haskell or Java, can describe
processes that cannot be carried out by a Turing machine.

Alan Turing argued that his model was a correct formulation of effective com-
putability and defended the following proposition, which has come to be called
Turing’s thesis :

Any process which could naturally be called an effective procedure can
be realized by a Turing machine.

Note that this is a thesis (i.e., an unproved proposition or hypothesis) and not a
theorem, since ‘effective procedure’ is an intuitive notion.

One argument he advanced in favour of the thesis was an ‘appeal to intuition’.
In his original paper9 he fashions this appeal to intuition into a powerful case,
which is reproduced verbatim below. Two things need to be borne in mind when
reading this abstract more than 70 years after it was written. First, it will be seen
that Turing is concerned with computations of a mathematical or numeric nature,
whereas today we more often encounter computers in the role of data processing
devices. However, there is nothing in the argument that does not carry over to
the more general setting. Second, when Turing uses the word ‘computer’ he is
clearly not using it in its modern sense; instead he means a person performing a
computation as described in Note 1. The argument runs as follows:

“Computing is normally done by writing certain symbols on pa-
per. We may suppose this paper is divided into squares like a child’s
arithmetic book. In elementary arithmetic the two-dimensional nature
of the paper is sometimes used. But such a use is always avoidable,
and I think it will be agreed that the two-dimensional character of the
paper is no essential of computation. I assume that the computation

8There are variations but they are all equivalent in the sense that anything computable by
one version is computable by any other.

9A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem,
Proc. London Math. Soc. 42 (1937).
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is carried out on one-dimensional paper, i.e., on a tape divided into
squares.10 I shall also suppose that the number of symbols which may
be printed is finite. If we were to allow an infinity of symbols, then
there would be symbols differing to an arbitrarily small extent. The
effect of this restriction of the number of symbols is not very serious.
It is always possible to use sequences of symbols in the place of single
symbols. Thus an Arabic numeral such as 17 or 999999999999999 is
normally treated as a single symbol. Similarly in any European lan-
guage words are treated as single symbols (Chinese, however, attempts
to have an enumerable infinity of symbols.) The differences from our
point of view between the single and compound symbols is that the
compound symbols, if they are too lengthy, cannot be observed at a
glance. This is in accordance with experience. We cannot tell at a
glance whether 9999999999999999 and 999999999999999 are the same.

“The behaviour of the computer at any moment is determined by
the symbols which he is observing, and his ‘state of mind’ at that
moment. We may suppose that there is a bound B to the number of
symbols or squares which the computer can observe at one moment. If
he wishes to observe more, he must use successive observations. We will
also suppose that the number of states of mind which need to be taken
into account is finite. The reasons for this are of the same character as
those which restrict the number of symbols. If we admitted an infinity
of states of mind, some of them will be ‘arbitrarily close’ and will be
confused. Again, the restriction is not one which seriously affects the
computation, since the use of more complicated states of mind can be
avoided by writing more symbols on the tape.

“Let us imagine the operations to be performed by the computer
to be split up into ‘simple operations’ which are so elementary that
it is not easy to imagine them further divided. Every such operation
consists of some change of the physical system consisting of the com-
puter and his tape. We know the state of the system if we know the
sequence of symbols on the tape, which of these are observed by the
computer (possibly with a special order), and the state of mind of the
computer. We may suppose that in a simple operation not more than
one symbol is altered. Any other changes can be split up into changes
of this kind. The situation in regard to the squares whose symbols may
be altered in this way is the same as in regard to the observed squares.
We may, therefore, without loss of generality, assume that the squares

10In fact, it can be rigorously demonstrated that a machine with a two-dimensional ‘tape’ is
no more powerful than one with a one-dimensional tape.
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whose symbols are changed are always the ‘observed’ squares.
“Besides these changes of symbols, the simple operations must in-

clude changes of distribution of the observed squares. The new ob-
served squares must be immediately recognisable by the computer.
I think it is reasonable to suppose that they can only be squares
whose distance from the closest of the immediately previously observed
squares does not exceed a certain fixed amount. Let us say that each
of the new observed squares is within L squares of an immediately
previously observed square.

“In connection with ‘immediate recognisability’, it may be thought
that there are other kinds of squares which are immediately recognis-
able. In particular, squares marked by special symbols might be taken
as immediately recognisable. Now if these squares are marked only
by single symbols there can only be a finite number of them, and we
should not upset our theory by adjoining these marked squares to the
observed squares. If, on the other hand, they are marked by sequences
of symbols, we cannot regard the process of recognition as a simple
process. This is a fundamental point and should be illustrated. In
most mathematical papers the equations and theorems are numbered.
Normally the numbers do not go beyond (say) 1000. It is, therefore,
possible to recognise a theorem at a glance by its number. But if
the paper was very long, we might reach Theorem 157767733443477;
then, further on in the paper, we might find ‘. . . hence (applying The-
orem 157767733443477) we have . . .’. In order to make sure which was
the relevant theorem we should have to compare the two numbers fig-
ure by figure, possibly ticking the figures off in pencil to make sure of
their not being counted twice. If in spite of this it is still thought that
there are other ‘immediately recognisable’ squares, it does not upset
my contention so long as those squares can be found by some process
of which my type of machine is capable.

“The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another within L squares
of the previously observed square.

“It may be that some of these changes necessarily involve a change
of state of mind. The most general single operation must therefore be
taken to be one of the following:

(A) A possible change (a) of symbol together with a possible change
of state of mind.
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(B) A possible change (b) of observed squares, together with a possible
change of state of mind.

“The operation actually performed is determined, as has been sug-
gested [above] by the state of mind of the computer and the observed
symbols. In particular, they determine the state of mind of the com-
puter after the operation.

“We may now construct a machine to do the work of this computer.
To each state of mind of the computer corresponds an ‘m-configuration’
of the machine. The machine scans B squares corresponding to the B
squares observed by the computer. In any move the machine can
change a symbol on a scanned square or can change any one of the
scanned squares to another square distant not more than L squares
from one of the other scanned squares. The move which is done, and
the succeeding configuration, are determined by the scanned symbol
and the m-configuration. The machines just described do not differ
very essentially from computing machines defined [in Note 3] and
corresponding to any machine of this type a [Turing] machine can be
constructed to compute the same sequence, that is to say the sequence
computed by the computer.”

Observe that in this careful argument Turing has justified each of the appar-
ently limiting features of his model: that the tape is one-dimensional, that the set
of states is finite, that the set of symbols is finite, or that only a fixed number of
tape symbols are visible at any time. For some features he argues that it would be
unreasonable to have things otherwise: an infinite set of states or an infinite tape
alphabet would inevitably lead to different states or symbols being confused11 .
For others he argues that no loss of generality is involved: any computation which
can be carried out on a two-dimensional sheet of paper can equally well be carried
out on a long thin tape.

Later in the course, we shall consider further evidence in support of Turing’s
thesis.

11I find this part of Turing’s argument problematic. Certainly at the level of modeling a person
carrying out calculations it is convincing but if we enlarge our view of computing to physically
realizable processes the point is not so clear. However to date nobody has produced a convinc-
ing counterexample. Marvin Minsky in his book Computation, Finite and Infinite Machines,
Prentice-Hall (1972), makes the following observation: ‘. . . for sufficiently similar states there
will be a chance of random transitions, e.g., because of thermal or quantum phenomena. There
is a limit to the amount of information that can be recovered from any physical system of limited
size. The same holds for whatever physical system is used to represent the the symbols within
the ‘squares’ of fixed dimensions.’
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