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Curves and Surfaces II
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Spline
• A long flexible strips of metal used by 

draftspersons to lay out the surfaces of 
airplanes, cars and ships

• Ducks weights attached to the splines 
were used to pull the spline in different 
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were used to pull the spline in different 
directions

• The metal splines had second order 
continuity
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Interpolating Splines

• When drawing a long curve with many 
control points, it will be convenient if the 
curve passes through the control curves
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Catmull-Rom Spline

• Think of the Hermite curve
• We set the tangent vectors at the endpoints 

such that they are decided by the two such that they are decided by the two 
surrounding control points
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Catmull-Rom Spline
• Catmull-Rom spline interpolates control 

points.  The gradient at each control point is 
the vector between adjacent control points.

• C1 continuity• C1 continuity
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C2 continuity?

• What if we want C2 continuity
• For example when representing the 

trajectories of the body trajectories of the body 
• We may want to use the acceleration to 

compute the force 
• The curve does not necessarily have to pass 

through the control points
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B-Splines(for basis splines)

• B-Splines 
– Another polynomial curve for modelling curves and 

surfaces 
– Consists of curve segments whose polynomial 
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– Consists of curve segments whose polynomial 
coefficients only depend on just a few control points  

• Local control

– Segments joined at knots
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B-splines
• The curve does not necessarily pass through 

the control points
• The shape is constrained to the convex hull 

made by the control points  made by the control points  
• Uniform cubic b-splines has C2 continuity

– Higher than Hermite or Bezier curves
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The basic one:
Uniform CubicB-Splines

tttfortX ii ≤≤= +)( 1
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• Cubic B-splines with uniform knot-vectoris the 
most commonly used form of B-splines
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Longer curves

• We can have a list of control points and use the uniform 
cubic spline to define a long C2 continuous curve 

• The unweighted cubic B-Splines have been shown for 
clarity.
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clarity.

• These are weighted and summed to produce a curve of the 
desired shape 

43
t86 m

m+1
0
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Generating a curve
X(t) 

Opposite we see an 
example of a shape to be 
generated.
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t

t

Here we see the curve 
again with the weighted 
B-Splines which 
generated the required 
shape.
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Cubic Uniform B-Spline
2D example

• For each i ≥ 4 , there is a knot between Qi-1 and Qi at t = ti.

• Initial points at t3 and tm+1 are also knots.  The following 
illustrates an example with control points set P0 … P9:
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Knot.
Control point.
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Uniform Non-rational B-Splines.

• First segment Q3 is defined by point P0 through P3 over the 
range t3 = 0 to t4 = 1.  So m at least 3 for cubic spline.

Knot.
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Knot.
Control point.P1

P2

P3

P0

Q3
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Uniform Non-rational B-Splines.

• Second segment Q4 is defined by point P1 through P4 over 
the range t4 = 1 to t5 = 2.
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Knot.
Control point.

Q4

P1

P3

P4

P2
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An example of using a uniform 
cubic B-spline

• Representing trajectories of characters
• Representing the joint angles of the characters 
• Need more control points to represent a • Need more control points to represent a 

longer continuous movement  
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An example of using a uniform 
cubic B-spline

• We may need to compute the amount of 
torque produced at the joints

• Or the amount of force exerted at end-• Or the amount of force exerted at end-
effectors 

• Then, need a C2 continuous curve  
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Domain of the function 

• Order k, Degree k-1
• Control points Pi (i=0,…,m)
• Knots : tj, (j=0,…, k + m)

≦ ≦

• Knots : tj, (j=0,…, k + m)
• The domain of the function  tk-1 ≦ t≦ tm+1

– Below, k = 4, m = 9,    domain, t3 ≦ t≦ t10

3
t

m+1
0
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A Bspline of order k is a parametric curve composed of a linear 
combination of basis B-splines Bi,n

Pi (i=0,…,m) the control points

B-Spline : 
A more general definition

∑
m
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Knots: tj, j=0,…, k + m

The B-spline basis functions can be defined recursively by 

∑
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The shape of the basis functions 

Bi,2 :  linear basis functions

Order = 2, degree = 1 

C0 continuous 

10/10/2008 Lecture 5 19

C0 continuous 

http://www.ibiblio.org/e-notes/Splines/Basis.htm
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The shape of the basis functions 

Bi,3 :  Quadratic basis functions 

Order = 3, degree = 2 

C1 continuous 
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C1 continuous 

http://www.ibiblio.org/e-notes/Splines/Basis.htm
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The shape of the basis functions 

Bi,4 :  Cubic basis functions 

Order = 4, degree = 3 

C2 continuous 
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C2 continuous 

http://www.ibiblio.org/e-notes/Splines/Basis.htm
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Uniform / non-uniform B-splines

• Uniform B-splines
– The knots are equidistant / non-equidistant
– The previous examples were uniform B-splines

• Parametric interval between knots does not 
have to be equal.

Non-uniform B-splines 

interval same t,equidistan  were,...,,, 210 mtttt
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Non-uniform B-splines.

• Blending functions no longer the same for each interval.
• Advantages

– Continuity at selected control points can be reduced to 
C1 or lower – allows us to interpolate a control point 

10/10/2008

C1 or lower – allows us to interpolate a control point 
without side-effects.

– Can interpolate start and end points. 
– Easy to add extra knots and control points.

• Good for shape modelling !  
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Controlling the shape of the curves

• Can control the shape through 
– Control points 

• Overlapping the control points to make it pass 
through a specific pointthrough a specific point

– Knots 
• Changing the continuity by increasing the 

multiplicity at some knot (non-uniform bsplines)
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Controlling the shape through 
control points

First knot shown with 4 

P2P0
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First knot shown with 4 
control points, and their 

convex hull.

P1 P3
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Controlling the shape through 
control points

First two curve segments 
shown with their respective 

P2P0
P4
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shown with their respective 
convex hulls.

Centre Knot must lie in the 
intersection of the 2 convex 

hulls. 

P1 P3
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Repeated control point.

First two curve segments 
shown with their respective 

convex hulls.

P0
P3
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convex hulls.

The curve is forced to lie on 
the line that joins the 2 

convex hulls.

P1=P2 P4
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Triple control point.
First two curve segments 

shown with their respective 
convex hulls.

Both convex hulls collapse 
to straight lines – all the 

P0
P4
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to straight lines – all the 
curve must lie on these lines.

P1=P2=P3



Computer Graphics

Controlling the shape through knots 

• Smoothness increases with order k in Bi,k

– Quadratic,  k = 3,  gives up to C1 continuity.

– Cubic, k = 4 gives up to C2 continuity.

• However, we can lower continuity order too with Multiple 
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• However, we can lower continuity order too with Multiple 
Knots,   ie.   ti = t i+1= t i+2 = …  Knots are coincident and so 
now we have non-uniform knot intervals.

• A knot with multiplicity p is continuous to the                    
(k-1-p)th  derivative.

• A knot with multiplicity k has no continuity at all,  i.e. the 
curve is broken at that knot.
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B-Splines at multiple knots
• Cubic B-spline
• Multiplicities are indicated
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Knot multiplicity
• Consider the uniform cubic (n=4) B-spline curve, 

t={0,1, … ,13}, m=9 , n=4, 7 segments



Computer Graphics Knot multiplicity
• Double knot at 5, 
• knot ={0,1,2,3,4,5,5,6,7,8,9,10,11,12}
• 6 segments, continuity = 1
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• Triple knot at 5
• knot={0,1,2,3,4

,5,5,5,6,7,8,9,10
,11},11}

• 5 segments
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Knot multiplicity

• Quadruple knot at 5
• 4 segments
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Summary of B-Splines.
• Functions that can be manipulated by a series of control 

points with C2 continuity and local control.
• Don’t pass through their control points, although can be 

forced.
• Uniform
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• Uniform
– Knots are equally spaced in t.

• Non-Uniform
– Knots are unequally spaced
– Allows addition of extra control points anywhere in the set.
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Summary cont.
• Do not have to worry about the continuity at 

the join points 
• For interactive curve modelling 

– B-Splines are very good.
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– B-Splines are very good.
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Reading for this lecture

• Foley at al., Chapter 11, sections 11.2.3, 
11.2.4, 11.2.9, 11.2.10, 11.3 and 11.5.

• Introductory text, Chapter 9, sections 9.2.4, 
9.2.5, 9.2.7, 9.2.8 and 9.3.
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• Introductory text, Chapter 9, sections 9.2.4, 
9.2.5, 9.2.7, 9.2.8 and 9.3.

.


