Computer Graphics

Lecture 16
Curves and Surfaces I



Spline

« Along flexible strips of metal used
draftspersons to lay out the surface
airplanes, cars and ships

* Ducks weights attached to the splir
were used to pull the spline in diffe
directions

 The metal splines had second orde
continuity




Interpolating Splines

 \When drawing a long curve with many
control points, it will be convenient if the
curve passes through the control curves



Catmull-Rom Spline

e Think of the Hermite curve

* \WWe set the tangent vectors at the endpoints
such that they are decided by the
surrounding control points
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Catmull-Rom Spline

Catmull-Rom spline interpolates control
points. The gradient at each control point is
the vector between adjacent control points.
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C2 continuity?

What if we want C2 continuity

For example when representing the
trajectories of the boo

We may want to use the acceleration to
compute the force

The curve does not necessarily have to pass
through the control points



B-Splines(for basis splines)

* B-Splines

— Another polynomial curve for modelling curves and
surfaces

— Consists of curve segments whose polyno
coefficients only depend on just a few control p®in

 Local control
— Segments joined &nots




B-splines
 The curve does not necessarily pass through
the control points

 The shape is constrained to the convex hull
made by the control point

« Uniform cubic b-splines has2Continuity
— Higher than Hermite or Bezier curves




The basic one:
Uniform CubicB-Splines

e Cubic Bsplines with unifornknot-vectons the
most commonly used form of-8plines

X(t) =t"TMQY

for t<t<t,,
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Longer curves

* \We can have a list of control points and use the uniform
cubic spline to define a long C2 continuous curve

« The unweighted cubic B-Splines have been shown for
clarity.

 These are weighted and summed to produce a curve of the
desired shape

3 |4 m+1




Generating a curve

X(t)

f\

f\*

Opposite we see an
example of a shape to be
generated.

Here we see the curve
again with theveighted
B-Splines which
generated the required
shape.



Cubic Uniform BSpline
2D example

 Foreach 24, there is a knot betwe€h, andQ, att = t..

e Initial points att; andt,,, are also knots. The following
illustrates an example with control points sgt.PPy:

A| Knot.
e | Control point.




Uniform Nonrational BSplines.

« First segmen®; is defined by poinP, throughP; over the
ranget; = 0 tot, = 1. Som at least 3 for cubic spline.

A Knot.
Control point.




Uniform Nonrational BSplines.

e Second segmeR, is defined by poinP, throughP, over
the rangd, = 1 tot; = 2.

A Knot.
Control point.




An example of using a uniform
cubic B-spline

* Representing trajectories of characters
* Representing the joint angles of the characters

 Need more control points to represel
longer continuous movement



An example of using a uniform
cubic B-spline

 \We may need to compute the amount of
torque produced at the joints

e Or the amount of force exerted at -
effectors

e Then, need a C2 continuous curve




Domain of the function

* Orderk, Degreek-1

e Control pointsPi (1=0,...,m)

 Knots :tj, j=0,..., k+1m)

« The domain of the functioftk-1 = t= tm+1
— Below, k=4, m=9, domaitg= t= tio

3 m+1




B-Spline:
A more general definition

A Bspline of ordek is a parametric curve composed of a linear
combination of basis B-splin&sn

Pi (i=0,...,m) the control points

Knots: t;,j=0,..., k+m p(t) = Z PB ,(t)

The B-spline basis functions can be defined recurswely by

1,t. <t<t.,
B|,1(t) = :

0, otherwise

B (1) = -t B, .(t)+ b 71
| 1:i+k—1 _ti | 1:i+k—1 _t'

B|+1,k—1 (t)



The shape of the basis functions

Bi2: linear basis functions
Order = 2, degree = 1

CO continuou:

http://www.ibiblio.org/e-notes/Splines/Basis.htm



The shape of the basis functions

Bis: Quadratic basis functions
Order = 3, degree = 2

C1 continuou:

http://www.ibiblio.org/e-notes/Splines/Basis.htm



The shape of the basis functions

Bi4: Cubic basis functions
Order = 4, degree = 3

C2 continuou:

\
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http://www.ibiblio.org/e-notes/Splines/Basis.htm




Uniform / nonuniform B-splines

e Uniform B-splines
— The knots are equidistant / non-equidistant
— The previous examples were uniforrsglines

t,, 1, t,,...,t,, wereequidistam samanterval

e Parametric interval between knots does not
have to be equal.

-Non-uniform Bsplines




Nonuniform B-splines.

* Blending functions no longer the same for each interval.
 Advantages

— Continuity at selected control points can be reduced to
C, or lower- allows us to interpolate a control po
without side-effects.

— Can interpolate start and end points.

— Easy to add extra knots and control points.
« Good for shape modelling !



Controlling the shape of the curves

e Can control the shape through

— Control points
« Overlapping the control points to make it pass
through a specific poi
— Knots

« Changing the continuity by increasing the
multiplicity at some knot (non-uniform bsplines)



Controlling the shape through

PO

control points

P2

First knot shown with
control points, and thel
convex hull.

r



Controlling the shape through
control points

First two curve segments
shown with their respecti\
convex hulls.

Centre Knot must lie in the
Intersection of the 2 convex
hulls.




Repeated control point.

PO

First two curve segments
shown with their respective
convex hulls

The curve is forced to lie ol
the line that joins the 2
convex hulls.




PO

Triple control point.

P1=P2=P:

‘P4

First two curve segments

shown with their respective

convex hulls.

Both convex hulls collapse
to straight line< all the
curve must lie on these line

S.



Controlling the shape through knots

* Smoothness increases with oréen B;
— Quadratic,k= 3, gives up to gcontinuity.
— Cubic, k=4 gives up to &continuity.

 However, we can lower continuity order too wMultiple
Knots, ie. t=t_ ;=t;,, = ... Knots are coincident and so
now we have non-uniform knot intervals.

« A knot with multiplicity p is continuous to the
(k-1-p)th derivative.

« A knot with multiplicity k has no continuity at all, i.e. the
curve is broken at that knotayl(t):{l,ti St<ty

0,otherwise

t—t t, —t

Bk (D)

B (t)= By (D) + ~

ti+k—1_ i ti+k—1 i



B-Splines at multiple knots

e Cubic Bspline
« Multiplicities are indicated



Knot multiplicity

e Consider the uniform cubic (n=4)$pline curve,
t={0,1, ... ,13}, m=9, n=4, 7 segments

&6 7 & 9 10 11 12 13



Knot multiplicity

 Double knot at 5,
e knot {0,1,2,3,4,5,5,6,7,8,9,10,11,12}
e 6 segments, continuity = 1



Knot multiplicity

e Triple knot at 5

e knot0,1,2,3,4
5,5,5,6,7,8,9,10
11}

e 5 segments



Knot multiplicity

« Quadruple knot at 5
4 segments



Summary of BSplines.

Functions that can be manipulated by a series of control
points with G continuity and local control.

Don’t pass through their control points, although can be
forced.

Uniform
— Knots are equally spaced in t.

Non-Uniform
— Knots are unequally spaced
— Allows addition of extra control points anywhenethe set.



Summary cont.

Do not have to worry about the continuity at
the join points

* For interactive curve modelling
— B-Splines are very goc



Reading for this lecture

* Foley at al., Chapter 11, sections 11.2.3,
11.2.4,11.2.9, 11.2.10, 11.3 and 11.5.

 Introductory text, Chapter 9, sections 9..
9.2.5,9.2.7,9.2.8and ¢



