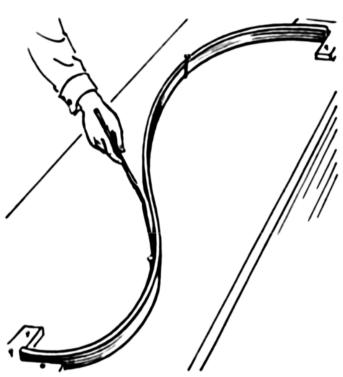
Computer Graphics

Lecture 16 Curves and Surfaces II

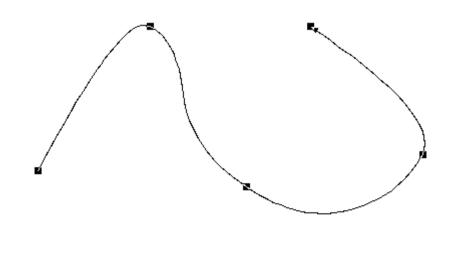
Spline

- A long flexible strips of metal used by draftspersons to lay out the surfaces of airplanes, cars and ships
- Ducks weights attached to the splines were used to pull the spline in differen directions
- The metal splines had second order continuity



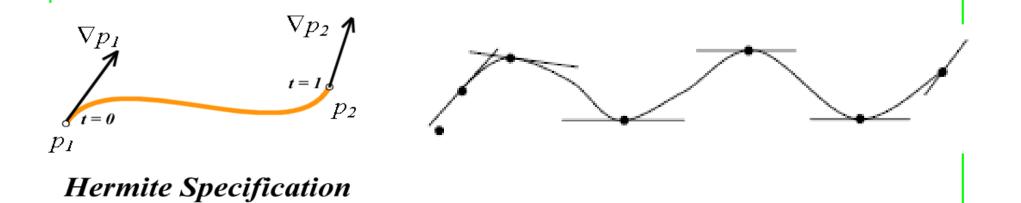
Interpolating Splines

• When drawing a long curve with many control points, it will be convenient if the curve passes through the control curves



Catmull-Rom Spline

- Think of the Hermite curve
- We set the tangent vectors at the endpoints such that they are decided by the two surrounding control points



Catmull-Rom Spline

- Catmull-Rom spline interpolates control points. The gradient at each control point is the vector between adjacent control points.
- C1 continuity

$$P^{i}(t) = T \cdot M_{CR} \cdot G_{B}$$

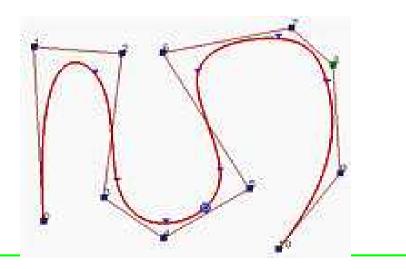
$$= \frac{1}{2} \cdot T \cdot \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_{i-3} \\ P_{i-2} \\ P_{i-1} \\ P_{i} \end{bmatrix}$$

C2 continuity?

- What if we want C2 continuity
- For example when representing the trajectories of the body
- We may want to use the acceleration to compute the force
- The curve does not necessarily have to pass through the control points

B-Splines (for basis splines)

- B-Splines
 - Another polynomial curve for modelling curves and surfaces
 - Consists of curve segments whose polynomial coefficients only depend on just a few control points
 - Local control
 - Segments joined at knots



B-splines

- The curve does not necessarily pass through the control points
- The shape is constrained to the convex hull made by the control points
- Uniform cubic b-splines has C₂ continuity – Higher than Hermite or Bezier curves

The basic one: Uniform Cubic B-Splines

• Cubic B-splines with uniform *knot-vector* is the most commonly used form of B-splines

$$X(t) = \mathbf{t}^{T} \mathbf{M} \mathbf{Q}^{(i)} \qquad for \quad t_{i} \leq t \leq t_{i+1} \qquad \text{The cubic uritism Bosine basis functions}$$
where:
$$\mathbf{Q}^{(i)} = (x_{i-3}, \dots, x_{i})$$

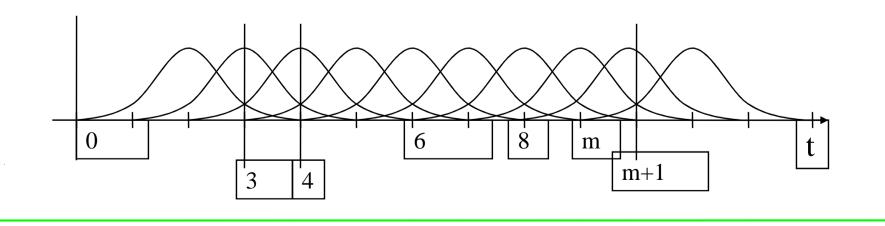
$$\mathbf{M} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix},$$

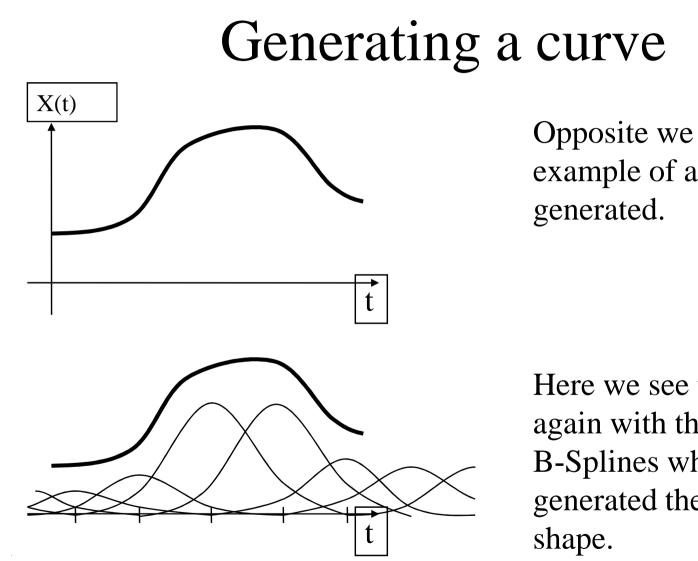
$$\mathbf{t}^{T} = ((t-t_{i})^{3}, (t-t_{i})^{2}, t-t_{i}, 1)$$

$$t_{i} : \text{knots}, \quad 3 \leq i$$

Longer curves

- We can have a list of control points and use the uniform cubic spline to define a long C2 continuous curve
- The unweighted cubic B-Splines have been shown for clarity.
- These are weighted and summed to produce a curve of the desired shape



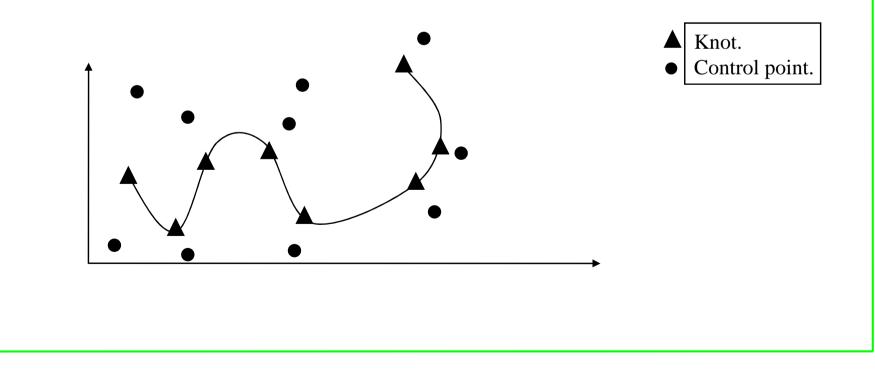


Opposite we see an example of a shape to be

Here we see the curve again with the weighted **B-Splines** which generated the required

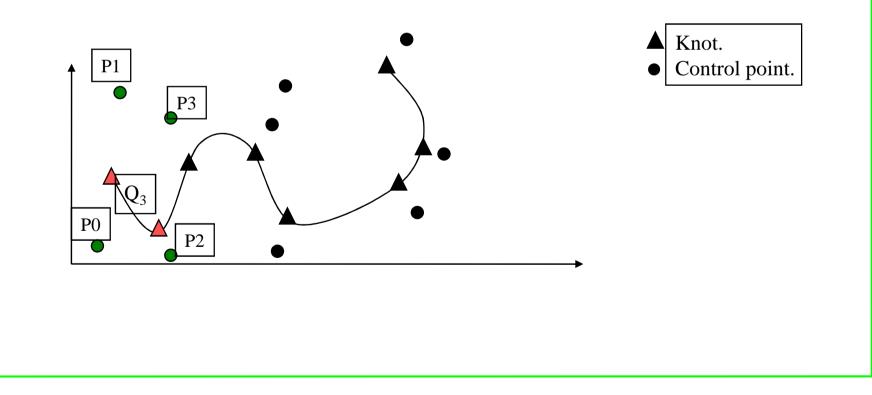
Computer Graphics Cubic Uniform B-Spline 2D example

- For each $i \ge 4$, there is a knot between Q_{i-1} and Q_i at $t = t_i$.
- Initial points at t_3 and t_{m+1} are also knots. The following illustrates an example with control points set $P_0 \dots P_9$:



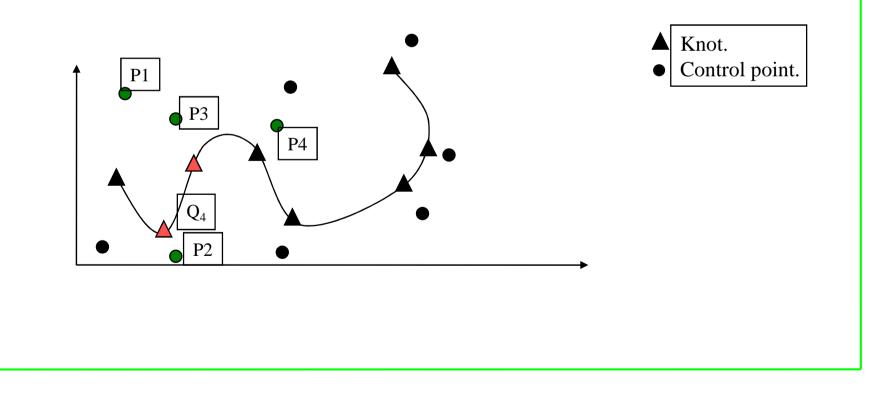
Uniform Non-rational B-Splines.

• First segment Q_3 is defined by point P_0 through P_3 over the range $t_3 = 0$ to $t_4 = 1$. So *m* at least 3 for cubic spline.



Uniform Non-rational B-Splines.

• Second segment Q_4 is defined by point P_1 through P_4 over the range $t_4 = 1$ to $t_5 = 2$.



An example of using a uniform cubic B-spline

- Representing trajectories of characters
- Representing the joint angles of the characters
- Need more control points to represent a longer continuous movement

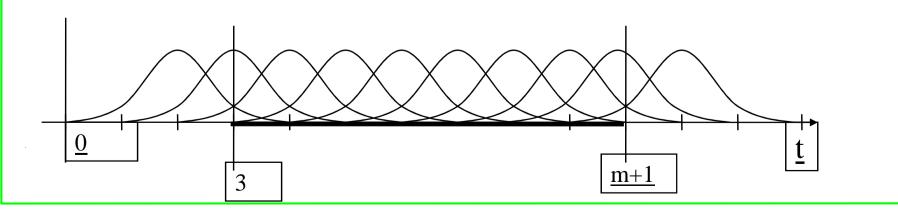
An example of using a uniform cubic B-spline

- We may need to compute the amount of torque produced at the joints
- Or the amount of force exerted at endeffectors
- Then, need a C2 continuous curve

Domain of the function

- Order k, Degree k-1
- Control points P_i (i=0,...,m)
- Knots : t_j , (j=0,..., k+m)
- The domain of the function $tk-1 \leq t \leq tm+1$

- Below, k = 4, m = 9, domain, $t_3 \leq t \leq t_{10}$



B-Spline : A more general definition

A Bspline of order k is a parametric curve composed of a linear combination of basis B-splines $B_{i,n}$

P_i (i=0,...,m) the control points

Knots: $t_j, j=0,..., k+m$ $p(t) = \sum_{i=0}^{m} P_i B_{i,n}(t)$ The B-spline basis functions can be defined recursively by

$$B_{i,1}(t) = \begin{cases} 1, t_i \le t < t_{i+1} \\ 0, \text{ otherwise} \end{cases}$$

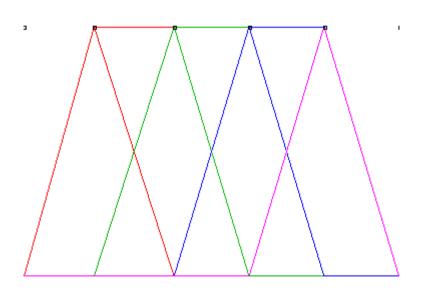
$$B_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} B_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k-1} - t_i} B_{i+1,k-1}(t)$$

The shape of the basis functions

B_{i,2}: linear basis functions

Order = 2, degree = 1

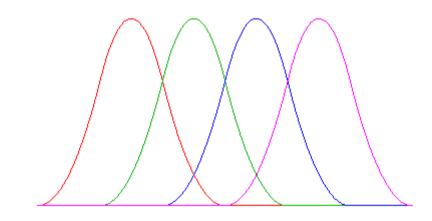
C0 continuous



http://www.ibiblio.org/e-notes/Splines/Basis.htm

The shape of the basis functions

- Bi,3: Quadratic basis functions
- Order = 3, degree = 2
- C1 continuous



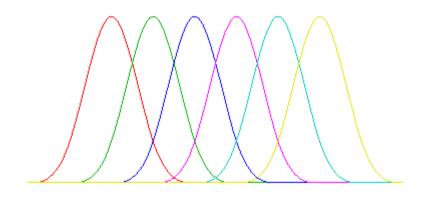
http://www.ibiblio.org/e-notes/Splines/Basis.htm

The shape of the basis functions

Bi,4: Cubic basis functions

Order = 4, degree = 3

C2 continuous



http://www.ibiblio.org/e-notes/Splines/Basis.htm

Uniform / non-uniform B-splines

- Uniform B-splines
 - The knots are equidistant / non-equidistant
 - The previous examples were uniform B-splines

 $t_0, t_1, t_2, \dots, t_m$ were equidistant, same interval

• Parametric interval between knots does not have to be equal.

→Non-uniform B-splines

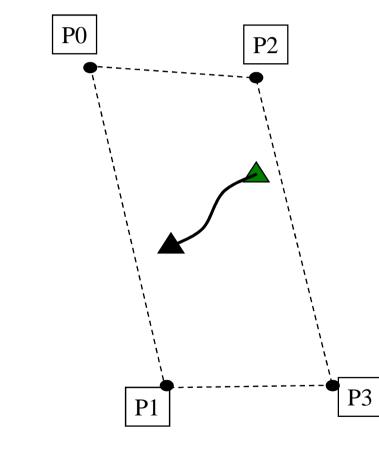
Non-uniform B-splines.

- Blending functions no longer the same for each interval.
- Advantages
 - Continuity at selected control points can be reduced to C_1 or lower allows us to interpolate a control point without side-effects.
 - Can interpolate start and end points.
 - Easy to add extra knots and control points.
 - Good for shape modelling !

Controlling the shape of the curves

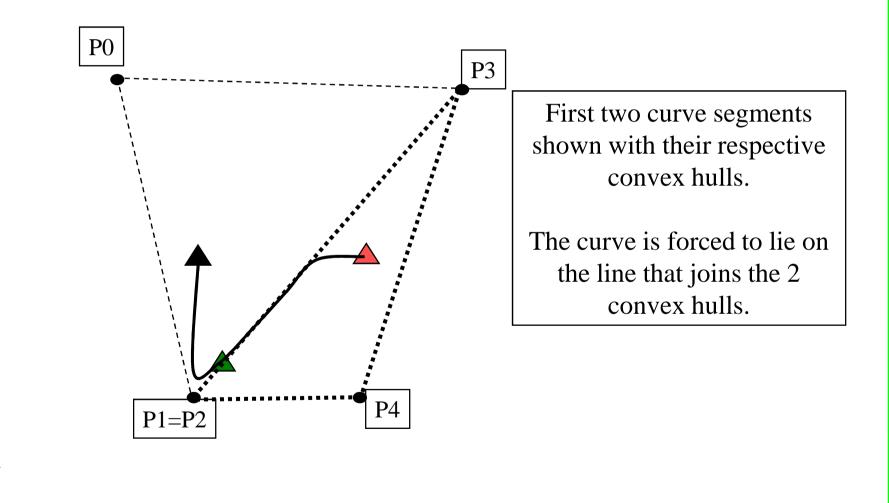
- Can control the shape through
 - Control points
 - Overlapping the control points to make it pass through a specific point
 - Knots
 - Changing the continuity by increasing the multiplicity at some knot (non-uniform bsplines)

Controlling the shape through control points

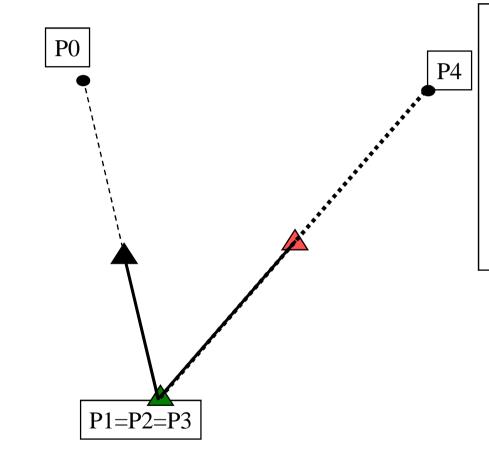


First knot shown with 4 control points, and their convex hull. **Computer Graphics** Controlling the shape through control points **P**0 P2 P4 First two curve segments shown with their respective convex hulls. Centre Knot must lie in the intersection of the 2 convex hulls. P3 **P**1

Repeated control point.



Triple control point.



First two curve segments shown with their respective convex hulls.

Both convex hulls collapse to straight lines – all the curve must lie on these lines.

Controlling the shape through knots

- Smoothness increases with order k in $B_{i,k}$
 - Quadratic, k = 3, gives up to C₁ continuity.
 - Cubic, k = 4 gives up to C₂ continuity.
- However, we can lower continuity order too with *Multiple Knots*, ie. $t_i = t_{i+1} = t_{i+2} = \dots$ Knots are coincident and so now we have non-uniform knot intervals.
- A knot with multiplicity *p* is continuous to the (*k*-1-*p*)*th* derivative.
- A knot with multiplicity k has no continuity at all, i.e. the curve is broken at that knot. $B_{i,1}(t) = \begin{cases} 1, t_i \le t < t_{i+1} \\ 0, \text{ otherwise} \end{cases}$

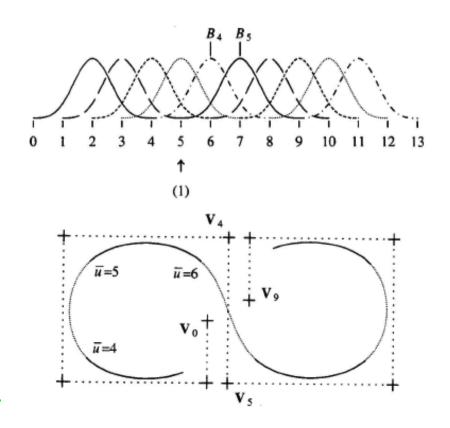
$$B_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} B_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k-1} - t_i} B_{i+1,k-1}(t)$$

B-Splines at multiple knots

- Cubic B-spline
- Multiplicities are indicated

Knot multiplicity

• Consider the uniform cubic (n=4) B-spline curve, t={0,1,...,13}, m=9, n=4, 7 segments

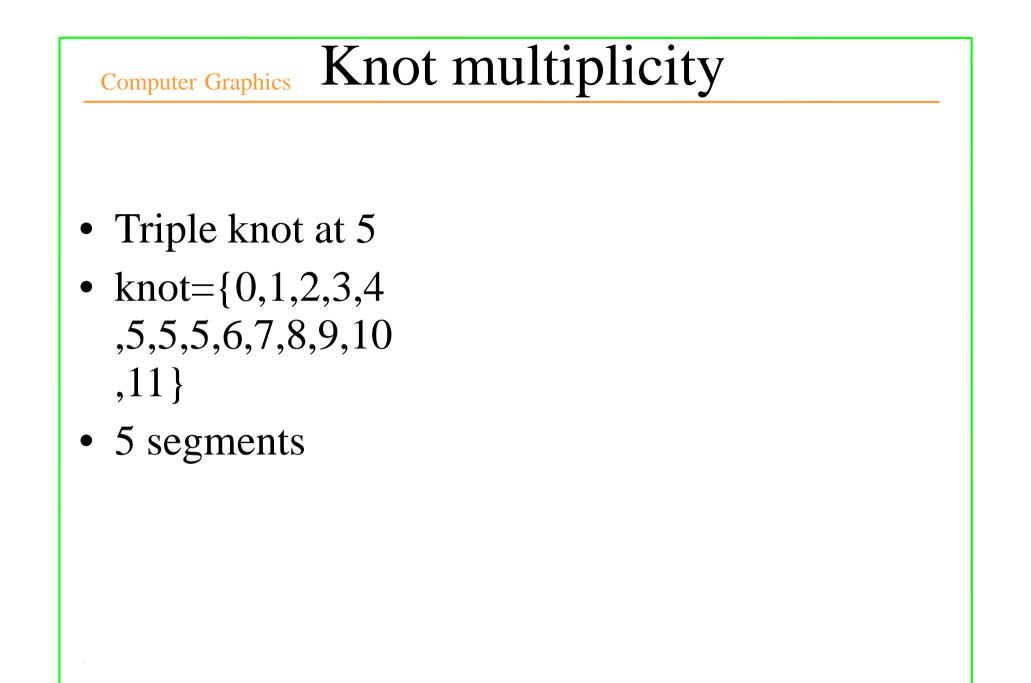


Knot multiplicity

• Double knot at 5,

Computer Graphics

- knot = {0,1,2,3,4,5,5,6,7,8,9,10,11,12}
- 6 segments, continuity = 1



Knot multiplicity

- Quadruple knot at 5
- 4 segments

Summary of B-Splines.

- Functions that can be manipulated by a series of control points with C_2 continuity and local control.
- Don't pass through their control points, although can be forced.
- Uniform
 - Knots are equally spaced in t.
- Non-Uniform
 - Knots are unequally spaced
 - Allows addition of extra control points anywhere in the set.

Summary cont.

- Do not have to worry about the continuity at the join points
- For interactive curve modelling
 - B-Splines are very good.

Reading for this lecture

- Foley at al., Chapter 11, sections 11.2.3, 11.2.4, 11.2.9, 11.2.10, 11.3 and 11.5.
- Introductory text, Chapter 9, sections 9.2.4, 9.2.5, 9.2.7, 9.2.8 and 9.3.