
1

Computer Graphics

Lecture 6

Rasterization

Taku Komura

2

Rasterization

• After projection, the polygons are still in the

continuous screen space

• We need to decide which pixels to lit how much

• This is called rasterization (or scan conversion)

• We have done this for lines already

 (in lecture 4)

Let’s do it for polygons now

Overview

Rasterization

• Scanline algorithm

• Rasterizing triangles

• Interpolation by barycentric coordinates

• Mean value coordinates

• Dividing polygons into triangles

Scanline algorithm

A traditional approach of rasterization

Filling in the pixels within the polygon along
the scan line

Scanline algorithm

For each scan line:

1. Find the intersections of the scan
line with all edges of the polygon.

2. Sort the intersections in the
increasing order of the x
coordinate.

3. Fill in all pixels between pairs of
intersections.

Can also deal with concave polygons

Span extrema
Only turn on pixels whose centers are
interior to the polygon:

Otherwise will intrude other adjacent polygons

round up values on the left edge of a span,

 round down on the right edge

midpoint algorithm interior

Computing the Interaction of Scan Lines
and Edges

• Computing the intersection of lines is
expensive

• Also requires floating point arithmatic

• Make use of edge coherence;

– Edges that intersected the previous scan line are
likely to intersect the next scan line

Edge Coherence

Use a method similar to the midpoint algorithm

𝑦 = 𝑚𝑥 + 𝑏, 𝑥 =
𝑦 − 𝑏

𝑚

At 𝑦 = 𝑠, 𝑥𝑠 =

𝑠−𝑏

𝑚

At 𝑦 = 𝑠 + 1, 𝑥𝑠+1 =

𝑠+1−𝑏

𝑚
= 𝑥𝑠 +

1

𝑚

Incremental calculation: 𝑥𝑠+1 = 𝑥𝑠 +

1

𝑚

How to avoid floating point
arithmatic?

• 𝑥𝑠+1 = 𝑥𝑠 +
1

𝑚
 = 𝑥𝑠 +

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

• We can keep track of the integer part of 𝑥𝑠
(defined as X) as well as the numerator part
(defined as N)

• Increase the X every time there is an overflow
(N > 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

Example

• (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛) = (0,0)

• (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (2,5)

 𝑦 =
5

2
𝑥

As s increases, Xs will be

0,
2

5
,
4

5
, 1

1

5
, 1

3

5
, 2, . .

𝑥1 = 1, 𝑥2 = 1,

Pseudo code of computing the left

span extrema

}

}

/* Overflow*/

 {)(if

;

);(ePixel Writ

){;;(for

int

int

int

1

maxmin

minmax

minmax

minmax

minmax

or; denomenat N -

;X

or denomenatN

 numeratorN

x,y

yyyyy

rdenomenatoN

yyrdenomenato

xxnumerator

yy

xx

m

Managing the Edges
• We need to manage the edges as they are used to

determine the area to be lit

• We prepare two lists of edges for this purpose

– Global Edge Table (all the egdes in the scene)

– Active Edge Table (the edges in the current scan
line)

Global Edge Table

– Edges are bucket sorted in the Global Edge Table
according to their minimum Y

Global Edge Table

• When the current scan line reaches the lower
endpoint of an edge (𝑦𝑚𝑖𝑛) it becomes active.

– Added into the Active Edge Table

• When the current scan line moves above the
upper endpoint (𝑦𝑚𝑎𝑥), the edge becomes
inactive.

– Removed from the Active Edge Table

•Active edges are sorted according to increasing X.

•Filling in pixels between left most edge intersection

 and stops at the second.

•Restarts at the third intersection and stops at the fourth.

Active Edge Table

Polygon fill rules
(To ensure consistency)

 Horizontal edges: Do not include in edge table

Vertices: If local max or min, then count

 twice, else count once.

If pixel is on edge, only draw left / bottom

 edges

17

Rasterizing Triangles

• Triangles are much easier to handle

• Always convex

• Always on a plane

• Never self-intersects

• Easy to interpolate data

• In many implementations, polygons with

more than three edges are divided into

triangles first

Triangle Rasterization by

Barycenteric Coordinates

Barycentric coordinates

• Can check whether a pixel is inside / outside

the triangle

• Can interpolate the attributes at the vertices

• Often used in modern graphics cards

• Can be easily parallelized

19

Triangle Rasterization

Consider a 2D triangle with vertices 𝒑𝟎, 𝒑𝟏, 𝒑𝟐.

Let 𝒑 be any point in the plane, it can be expressed
by

𝒑 = 𝒑𝟎 + 𝛽 𝒑𝟏 − 𝒑𝟎 + 𝛾 𝒑𝟐 − 𝒑𝟎

 = 1 − 𝛽 − 𝛾 𝒑𝟎 + 𝛽 𝒑𝟏 + 𝛾𝒑𝟐

 = 𝛼𝒑𝟎 + 𝛽 𝒑𝟏 + 𝛾𝒑𝟐

 𝛼 + 𝛽 +𝛾 = 1, 𝛼, 𝛽, 𝛾 ∈ ℛ

20

Barycentric Coordinates

We will have 𝛼, 𝛽, 𝛾 ∈ [0,1] if and only if p is inside

the triangle.

We call the 𝛼, 𝛽, 𝛾 the barycentric coordinates of

p.

The triangle is composed of 3 points

 p0 (x0,y0), p1 (x1, y1), p2(x2,y2).

 For point (x,y), its barycentric coordinates can be

 computed by

 where

Computing Barycentric Coordinates

22

Bounding Box of a Triangle

Calculate a tight bounding box for a triangle:
simply calculate pixel coordinates for each
vertex, and find the minimum/maximum for
each axis

min (x0,x1,x2), max (x0,x1,x2)

min (y0,y1,y2), max (y0,y1,y2)

23

Scanning inside the triangle

 Once we've identified the bounding box, we
loop over each pixel in the box.

For each pixel, we first compute the
corresponding (x, y) coordinates in the
canonical view volume

Next we convert these into barycentric
coordinates for the triangle being drawn.

Only if the barycentric coordinates

 are within the range of [0,1], we

 plot it

Interpolation by Barycentric
Coordinates

We can use the barycentric coordinates to
interpolate attributes of the triangle
vertices

• color, depth, normal vectors, texture

coordinates

c1
c2

c3

αc1+βc2 +γc3

(α,β,γ)

Interpolation of Color

• We can compute the color at the vertices
(computed using the lighting equation) and
interpolate the color on the surface of the
triangle

• This is called Gouraud shading

 c1
c2

c3

αc1+βc2 +γc3

(α,β,γ)

Interpolation of Depth

• When triangles are overlapped, need to
compute the depth at each pixel

• Can be computed by barycentric coordinates

• Compare the depth of the pixel at different
triangles and only show the closest one

• This is called Z-buffering d1 d2’

d3

d1’ d2

d3’

α d1+β d2 +γ d3

(α,β,γ)

 α'd1’+β’d2’+γ’d3’

Exercise
1. What are the barycentric

 coordinates at point A and B?

2. What is the depth of the triangle

 surface at point B?

What about polygons with many
vertices?

• Can we compute barycentric coordinates for polygons
with more vertices?

• Can we compute barycentric coordinates for 3D
meshes?

 -> Mean value coordinates
 Harmonic coordinates
 (generalized barycentric coordinates)

Mean Value Coordinates

• A good and smooth barycentric coordinates
that can

• smoothly interpolate the boundary values

• Also works with concave polygons

• There is also a 3D version

Mean Value Coordinates

• Can interpolate convex and concave polygons

• Smoothly interpolate the interior as well as
exterior

Mean Value Coordinates

• Can interpolate convex and concave polygons

• Smoothly interpolate the interior as well as
exterior

Mean Value Coordinates

• Can be computed in 3D

• Applicable for mesh editing

Polygon Decomposition

However, for polygons with more than four vertices,
we usually decompose them into triangles

P2

P0

P1 P3

P4

P5

P6

P7

Simple for convex polygons.

Concave more difficult.

Polygon Decomposition:

Algorithm

Start from the left and form the leftmost triangle:

• Find leftmost vertex (smallest x) – A

• Compose possible triangle out of A and the two

 adjacent vertices B and C

• Check to ensure that no other polygon point P is

 inside of triangle ABC

• If all other polygon points are outside of ABC

 then cut it off from polygon and proceed with

 next leftmost triangle

Polygon decomposition (2)

• The left most vertex A

• A triangle is formed by A and the two adjacent
B and C

• Check if all the other vertices are outside the
triangle

Polygon decomposition (3)

If a vertex is inside, form a new triangle with leftmost

inside vertex and point A, proceed as before.

37

Reading for rasterization
Scanline algorithm

 Foley et al., Chapter 3.5, 3.6

Baricentric coordinates

www.cs.caltech.edu/courses/cs171/bar
ycentric.pdf

Mean value coordinates for closed triangular meshes,

SIGGRAPH 2005

Polygon decomposition

http://www.siggraph.org/education/mater

ials/HyperGraph/scanline/outprims/pol

ygon1.htm

http://www.cs.caltech.edu/courses/cs171/barycentric.pdf
http://www.cs.caltech.edu/courses/cs171/barycentric.pdf
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm

