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Rasterization  

• After projection, the polygons are still in the 

continuous screen space 

• We need to decide which pixels to lit how much   

• This is called rasterization (or scan conversion)  

• We have done this for lines already 

 (in lecture 4)  

Let’s do it for polygons now  



Overview 

Rasterization 

• Scanline algorithm 

• Rasterizing triangles 

• Interpolation by barycentric coordinates 

• Mean value coordinates  

• Dividing polygons into triangles  



Scanline algorithm 

A traditional approach of rasterization 

Filling in the pixels within the polygon along 
the scan line 



Scanline algorithm 
 

For each scan line: 

 

1. Find the intersections of the scan  
line with all edges of the polygon. 

2. Sort the intersections in the 
increasing order of the x 
coordinate.  

3. Fill in all pixels between pairs of 
intersections. 

 

Can also deal with concave polygons 

 



Span extrema 
Only turn on pixels whose centers are  
interior to the polygon: 

Otherwise will intrude other adjacent polygons 

round up values on the left edge of a span,  

   round down on the right edge 

 

midpoint algorithm        interior 



Computing the Interaction of Scan Lines 
and Edges 

• Computing the intersection of lines is 
expensive 

• Also requires floating point arithmatic  

• Make use of edge coherence;  

– Edges that intersected the previous scan line are 
likely to intersect the next scan line 

 

 

 



Edge Coherence 
  

Use a method similar to the midpoint algorithm 
 
 

𝑦 = 𝑚𝑥 + 𝑏, 𝑥 =
𝑦 − 𝑏

𝑚
 

 
At 𝑦 = 𝑠, 𝑥𝑠 =

𝑠−𝑏

𝑚
 

 
At 𝑦 = 𝑠 + 1, 𝑥𝑠+1 =

𝑠+1−𝑏

𝑚
= 𝑥𝑠 +

1

𝑚
 

 
 
Incremental calculation: 𝑥𝑠+1 = 𝑥𝑠 +

1

𝑚
  

 



How to avoid floating point 
arithmatic? 

• 𝑥𝑠+1 = 𝑥𝑠 +
1

𝑚
 = 𝑥𝑠 +

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 

• We can keep track of the integer part of 𝑥𝑠 
(defined as X) as well as the numerator part 
(defined as N) 

• Increase the X every time there is an overflow 
(N > 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 



Example 

• (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛) = (0,0)  

• (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (2,5)  

                    𝑦 =
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𝑥1 = 1, 𝑥2 = 1,  

 



Pseudo code of computing the left  
 

span extrema 
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Managing the Edges 
• We need to manage the edges as they are used to 

determine the area to be lit  

• We prepare two lists of edges for this purpose 

– Global Edge Table (all the egdes in the scene) 

– Active Edge Table (the edges in the current scan 
line) 

 

 



Global Edge Table  

– Edges are bucket sorted in the Global Edge Table 
according to their minimum Y 

 

 



Global Edge Table  

• When the current scan line reaches the lower 
endpoint of an edge (𝑦𝑚𝑖𝑛) it becomes active. 

– Added into the Active Edge Table 

• When the current scan line moves above the 
upper endpoint (𝑦𝑚𝑎𝑥), the edge becomes 
inactive. 

– Removed from the Active Edge Table 

 

 



•Active edges are sorted according to increasing X.  
 
 
•Filling in pixels between left most edge intersection  
 
 and  stops at the second.  
 
 
•Restarts at the third intersection and  stops at the fourth. 

Active Edge Table  



 

Polygon fill rules 
(To ensure consistency) 

 Horizontal edges: Do not include in edge table 

 

Vertices: If local max or min, then count  

   twice, else count once. 

 

 

If pixel is on edge, only draw left / bottom  

   edges  
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Rasterizing Triangles 

• Triangles are much easier to handle  

• Always convex 

• Always on a plane 

• Never self-intersects 

• Easy to interpolate data 

• In many implementations, polygons with 

more than three edges are divided into 

triangles first 



Triangle Rasterization by 

Barycenteric Coordinates 
 

Barycentric coordinates 

• Can check whether a pixel is inside / outside 

the triangle   

• Can interpolate the attributes at the vertices 

• Often used in modern graphics cards 

• Can be easily parallelized  
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Triangle Rasterization 

Consider a 2D triangle with vertices 𝒑𝟎, 𝒑𝟏, 𝒑𝟐.  

Let 𝒑  be any point in the plane,  it can be expressed 
by  

𝒑 = 𝒑𝟎 + 𝛽 𝒑𝟏 − 𝒑𝟎 + 𝛾 𝒑𝟐 − 𝒑𝟎  

     = 1 − 𝛽 − 𝛾 𝒑𝟎 + 𝛽 𝒑𝟏 + 𝛾𝒑𝟐 

     = 𝛼𝒑𝟎 + 𝛽 𝒑𝟏 + 𝛾𝒑𝟐 

 

 𝛼 + 𝛽 +𝛾 = 1, 𝛼, 𝛽, 𝛾 ∈ ℛ 
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Barycentric Coordinates 

We will have 𝛼, 𝛽, 𝛾 ∈ [0,1] if and only if p is inside 
 
the triangle. 
 
 
We call the 𝛼, 𝛽, 𝛾  the barycentric coordinates of 

p.  



The triangle is composed of 3 points  
 
   p0 (x0,y0), p1 (x1, y1), p2(x2,y2). 
 
 
     For point (x,y), its barycentric coordinates can be  
 
     computed by  
 
 
 
 
 
 where  
 
 
 
        
 
 
 
 
          
 
 
 
 
             
 
 
 
 
 
 
 

Computing Barycentric Coordinates 
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Bounding Box of a Triangle 

Calculate a tight bounding box for a triangle: 
simply calculate pixel coordinates for each 
vertex, and find the minimum/maximum for 
each axis 

min (x0,x1,x2), max (x0,x1,x2) 

min (y0,y1,y2), max (y0,y1,y2) 
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Scanning inside the triangle 

 Once we've identified the bounding box, we 
loop over each pixel in the box. 

For each pixel, we first compute the 
corresponding (x, y) coordinates in the 
canonical view volume  

Next we convert these into barycentric 
coordinates for the triangle being drawn.  

Only if the barycentric coordinates 

   are within the range of [0,1], we  

   plot it 



Interpolation by Barycentric 
Coordinates 

We can use the barycentric coordinates to 
interpolate attributes of the triangle 
vertices  

• color, depth, normal vectors, texture  

coordinates 

 

 

 

c1 
c2 

c3 

αc1+βc2 +γc3 

(α,β,γ) 



Interpolation of Color  

• We can compute the color at the vertices 
(computed using the lighting equation) and 
interpolate the color on the surface of the 
triangle 

• This is called Gouraud shading  

 c1 
c2 

c3 

αc1+βc2 +γc3 

(α,β,γ) 



Interpolation of Depth 

• When triangles are overlapped, need to 
compute the depth at each pixel  

• Can be computed by barycentric coordinates 

• Compare the depth of the pixel at different 
triangles and only show the closest one 

• This is called Z-buffering d1 d2’ 

d3 

d1’ d2 

d3’ 

α d1+β d2 +γ d3 

(α,β,γ) 

 α'd1’+β’d2’+γ’d3’ 



Exercise 
1. What are the barycentric  
   
 coordinates at point A and B? 
 
2. What is the depth of the triangle  
 
      surface at point B? 
 



What about polygons with many 
vertices? 

• Can we compute barycentric coordinates for polygons 
with more vertices? 
 
 
 
 

• Can we compute barycentric coordinates for 3D 
meshes? 

 ->  Mean value coordinates 
       Harmonic coordinates   
  (generalized barycentric coordinates) 



Mean Value Coordinates 

• A good and smooth barycentric coordinates 
that can 

• smoothly interpolate the boundary values 

• Also works with concave polygons 

• There is also a 3D version 



Mean Value Coordinates 

• Can interpolate convex and concave polygons 

• Smoothly interpolate the interior as well as 
exterior 

 



Mean Value Coordinates 

• Can interpolate convex and concave polygons 

• Smoothly interpolate the interior as well as 
exterior 

 



Mean Value Coordinates 

• Can be computed in 3D  

• Applicable for mesh editing 



Polygon Decomposition 

However, for polygons with more than four vertices, 
we usually decompose them into triangles 

P2 

P0 

P1 P3 

P4 

P5 

P6 

P7 

Simple for convex polygons. 

Concave more difficult. 



Polygon Decomposition: 
 

Algorithm  

Start from the left and form the leftmost triangle: 
 
• Find leftmost vertex (smallest x) – A 

 
• Compose possible triangle out of A and the two  
   
     adjacent vertices B and C 
 
• Check to ensure that no other polygon point P is  

 
     inside of triangle ABC 
 
• If all other polygon points are outside of ABC  

 
     then cut it off from polygon and proceed with  
 
     next leftmost triangle 
 
 



Polygon decomposition (2) 

• The left most vertex A 

• A triangle is formed by A and the two adjacent 
B and C 

• Check if all the other vertices are outside the 
triangle 



Polygon decomposition (3) 

 
If a vertex is inside, form a new triangle with leftmost  
 
inside vertex and point A, proceed as before. 
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Reading for rasterization 
Scanline algorithm 
 
    Foley et al., Chapter 3.5, 3.6 
 
Baricentric coordinates 
 

www.cs.caltech.edu/courses/cs171/bar
ycentric.pdf 

 
Mean value coordinates for closed triangular meshes,  
 
SIGGRAPH 2005 
 
Polygon decomposition 

http://www.siggraph.org/education/mater

ials/HyperGraph/scanline/outprims/pol

ygon1.htm 

http://www.cs.caltech.edu/courses/cs171/barycentric.pdf
http://www.cs.caltech.edu/courses/cs171/barycentric.pdf
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm
http://www.siggraph.org/education/materials/HyperGraph/scanline/outprims/polygon1.htm

