
Tutorial 8 - Gaussian Stratified Sampling - extending PBRT
with your own algorithms

Computer Graphics
Kartic Subr and Martin Asenov

November 17, 2019

In this tutorial we are going to look at how you can easily extend the functionality of pbrt by
implementing a new sampler. We base the new sampler on the Stratified sampler. In the original
sampler, when we use the jittered mode we use a uniform distribution to sample the offset from the
center [1]. As such we are going to look at the steps necesary to add the new functionality to pbrt.
All the changed files described below, you can find in the code folder of the tutorial.

First, we need to define the new samplers as part of the pbrt API, which can be done in
src/core/api.cpp. We include the header file of our new sampler, gaussjitter.h, and define the
new sampler in the MakeSampler.

Next, we define the header file and its implementation in folder where the rest of the samplers are
implemented, src/samplers/gaussjitter.h and src/samplers/gaussjitter.cpp. If you exam-
ine stratified.cpp you will see the external calls, such as StratifiedSample1D, StratifiedSample2D,
etc., where the actual sampling is implemented. As such our new sampler follows almost the exact
same structure as the stratified sampler.

Most of the changes are implemented src/core/sampling.cpp. First we implemented sampleGauss

which samples according to a normal distribution N(µ, σ2), where µ = 0.5 (the center of the sam-
pling region) and a σ specified when defining the scene. We then substitute the uniform sampling
with the just defined normal distribution sampling.

(a) (b)

Figure 1: Example killeroo scene with (a) random and (b) gaussian stratified sampler defined here.

And that’s it! The just defined sampler can be used as the other samplers, by specifying it in a
.pbrt file. You have been provided with all the code to allow you to make that simple modification

1



to the stratified sampler. Make sure that you can apply the described changes and are able to
compile the modified pbrt.

As mentioned in previous tutorials to compile pbrt you can follow the documentation here:
https://github.com/mmp/pbrt-v3. For dice machines follow the section Makefile builds (Linux,
other Unixes, and Mac), with the only difference being that you need to run cmake3, rather than
cmake. To recompile the project after you have made a change is enough to run the make -j from
the build folder again.
General tips:

1. While it is good to have a good knowledge of the different components of pbrt, when it comes
to extending a certain module think about the input-output requirements of that module.
What is been provided to that module; what do I need to return?

2. Make use of the existing documentation and examples. The pbrt book describes in a lot of
details how the different components good. Moreover, there are multiple examples of different
samplers, materials, integrators, etc. - different parts that you might want to extend. It is
often beneficial to find the example that it is closely related to what you want to do, and
extend it.

References

[1] Stratified sampling. http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/

Stratified_Sampling.html.

2

https://github.com/mmp/pbrt-v3
http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Stratified_Sampling.html
http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Stratified_Sampling.html

