
Computer Graphics, Autumn 2019
Assignment 2

The Path of Light

Alexandros Keros, Kartic Subr

Due date: 04/11/19 (5pm)

Your recent success with the “Reel to Real" Studios interview has landed you a position
as a computer graphics intern! Your first task is to implement a custom ray tracer, in
C++, to augment the company’s rendering arsenal. Following the architecture provided,
and employing the libraries given, you are asked to populate the necessary classes resulting
in a fully functional, photorealistic ray tracer, simulating different cameras, light sources,
objects, and shading according to the Blinn-Phong model. Using your implementation
you should render a scene showcasing the abilities of your custom ray tracer.

Code Architecture
You are provided with class definitions according to the UML class diagram found in
Figure 1. The given code supplies all the necessary header files and classes that will
dictate your implementation, and it is compulsory to use this class structure. The input
file should be in json format, according to the example of Figure 2, and the output image
format is .ppm (Refer to “Implementation Details" section for for additional information).

To help you with your implementation, you are given a basic vector library, a json
input file parser, and a .ppm output file writer. Please read the Implementation Details
below, as well as the README.txt file found in the supplied code archive.

What To Submit
The submitted .zip file should contain:

• A report explaining the steps taken to implement your ray tracer, including detailed
descriptions of feature implementations, and rendered images illustrating each of its
abilities. The report should be in .pdf format, and explain your work, step by step,
with inline images. Figures should be numbered, annotated, referenced and clearly
visible. Finally, include a qualitative assessment of your results for each feature of
the ray tracer implemented. If multiple cameras and light sources are implemented,

1

RayTracer

SceneCamera

LightSource Shape

Material

Pinhole ThinLens

PointLight AreaLight
Sphere

Plane
Triangle

TriMesh
BVH

BlinnPhong

«struct»
Ray

«struct»
Hit

1

*

1

*
1

1

1

1

1

1

1

*

1

*

Figure 1: UML class diagram of ray tracer

compare and contrast their output. If optimizations, such as Bounding Volume
Hierarchies (BVH) are implemented, comment on the computational efficiency of
the ray tracer in terms of rendering time/memory requirements, etc.

• A folder containing your ray tracer implementation. It should be implemented
in C++, and should follow the class structure provided. You should imple-
ment all functions and include all member variables required. You can add additional
classes, as long as their purpose is clearly explained both in the comments and the
report. The submitted code should be clean and readable, with indicative variable
and function naming, and should contain ample comments describing function’s
operations and variable roles.

• A final output image showcasing the abilities of your ray tracer, in .ppm format,
along with the input file(s) used to generate it.

A submission of only the final output without explanations and intermediate steps will
only receive half the credit. Plagiarism is considered a serious offence, so please
make sure that you supply original code, or clearly reference the sources from which your
code originates.

Please name your submission file as <your UUN>_A2.zip, and upload it on the Learn
platform (https://learn.ed.ac.uk) as the second assignment for the course.

2

https://learn.ed.ac.uk

Marking Scheme
A total of 100 points are assigned for this project, which will then be halved, i.e. its
final contribution to your grade will be at most 50%, depending on the marks on your
following two assignments. See the course website for clarification. The marking scheme
is described below. Numbers in parentheses indicate points of the specific task. Each
student is expected to design a unique scene illustrating the abilities of the implemented
ray tracer. Provide evidence of having achieved each of the following milestones in your
report.

1. Basic ray tracer (Total 30)

• Ray casting (5)
• Camera - pinhole camera (5)
• Light source - point light source (5)
• Shapes 1:

– Sphere (2)
– Planar quad (2)
– Triangle (2)
– Triangle meshes

∗ explicit definition (2)
∗ .ply file parsing (2)

• Materials & Shading - Blinn-Phong model (5)

2. Texture mapping (Total 15)

• Sphere (5)
• Planar quad (3)
• Triangle (2)
• Triangle meshes (5)

3. Bounding Volume Hierarchy (BVH) (20)

4. Distributed raytracing (max. 1 bounce): numerical integration (Total 20)

• Thin lens camera model - depth of field effect (5)
• Area light source - soft shadows effect (5)
• Compare random sampling with jittered for above two cases and explain the

significance of your results. (5 + 5)

5. Creative modelling for feature demonstration - a scene that demonstrates all the
above features (15)

1The term Shapes is used to refer to scene objects, in order to avoid confusion with C++ objects.

3

Implementation Details
Supplied code

The code structure supplied is already organized in folders. You are asked to respect the
file and class structure, but you can add additional source files in the specified folders, if
needed, as long as their addition is justified. To compile your code you will need to use
CMake (minimum version v2.8) with the CMakeLists.txt file provided. CMake is a tool
that aids the build process of your C++ application, and has already been configured for
the code and libraries supplied with the assignment. In unix based systems, open your
terminal and run:

1 cd /path/ to /RayTracer
2 mkdir bu i ld
3 cd bu i ld
4 cmake . .
5 make
6 #run your code wi th
7 . / r ay t r a c e r <arg1> <arg2> . . .

Otherwise, you can use your preferred CMake tool to build your project in the operating
system of your choice.

UML diagram

Unified Modelling Language (UML) class diagrams provide a useful specification, visual-
ization, and documentation tool for object oriented software systems, with which objec-
t/class structure and interactions can be concretely specified in an easy to read graphical
format. Specifically, classes, such as the RayTracer class, are depicted as rectangular
nodes (Figure 3, far left). Inheritance relationship between a parent class (Camera) and
children subclasses (Pinhole and ThinLens) are denoted by a hollow arrow pointing from
the children to the parent class (Figure 3, second from the left), and signifies that children
classes inherit properties of a more generic parent class. Composition and aggregation re-
lationships between classes describe how objects take part in the instantiation of another
object (Figure 3, second from right, and far right, respectively). Composition between
objects signifies that objects (LightSource and Shape) exist only with the existence of a
third object (Scene) and are destroyed when the latter object is destroyed. On the other
hand, aggregation is a “part of” relationship, where objects (Sphere, Plane, etc) come to-
gether to form another object (BVH), but their existence is not dependent on the latter
and they can exist independently.

This class structure, along with the relationships shown in the UML class
diagram of Figure 1 and described here, should be present in your implemen-
tation.

4

RayTracer

Camera

Pinhole ThinLens

Scene

LightSource Shape

1

*

1

*

Sphere Plane

Triangle TriMesh

BVH

Figure 3: UML relations. Classes are depicted as rectangular nodes, to the left. Inheri-
tance is denoted by a hollow arrowhead pointing from the children classes to the parent
class, second to left. The filled-in diamond indicates the composition relation between
classes, and the hollow diamond shape indicates the aggregation relation between classes,
second to right, and far right. Numbers nearby endpoints dictate multiplicities of the
association.

Inheritance

In the supplied code you will find examples of inheritance for two distinct cases. One
example is given for the Camera base class and its Pinhole and ThinLens subclasses,
where the type of camera is determined at runtime, as parsed by the example input file.
The second example provided is that of the Sphere object, which is a subclass of the Shape
class. You are expected to follow the class structure provided, respecting the
inheritance relationships dictated by the supplied code and the accompanying
UML class diagram of Figure 1.

Libraries & methods provided

You are provided with the following libraries, along with examples of their use in the
examples/ folder:

• Vector library
You are provided with a bare-bones vector library that implements all necessary
operations between 3 element vectors, Vec3<T>, and 4x4 transformation matri-
ces , Matrix44<T>, in math/geometry.h. A basic how-to example is provided in
examples/vecMatrixExample.cpp. After the supplied code compilation, you can
execute it by running ./vectorexample from within your build file.

• Rapidjson library
Rapidjson (http://rapidjson.org/) is a header only json parser/generator imple-
mented in C++, that should be helpful for parsing you tracer’s input file. A com-
prehensive tutorial can be found at http://rapidjson.org/md_doc_tutorial.
html, and we have included a basic how-to example in examples/jsonExample.cpp.
After the supplied code compilation, you can execute the example by running
./jsonexample from within your build file.

• PPMWriter
You are provided with a method to output .ppm image files by supplying your final
pixel value container, which can be used as:

5

http://rapidjson.org/
http://rapidjson.org/md_doc_tutorial.html
http://rapidjson.org/md_doc_tutorial.html

1 //int width - image width
2 //int height - image height
3 //Vec3 <float >* framebuffer - pixel value container as

a Vec3 array , values 0-255
4 //char* filename - output image filename
5 PPMWriter :: PPMWriter(width ,height ,framebuffer ,

filename);

Sampler comparison

For the quantitative evaluation and error convergence comparison of jittered and uniformly
random sampling, you are asked to compare the mean squared error (MSE) of the linear
RGB values (in range [0, 1]) of pixels within a region of the output images. Firstly, you
render a scene using high sample count (5000 and above, or until convergence has been
achieved, i.e. no noise artifacts are visible in the image), which will act as the reference
image Iref . Then, you render scenes with stepwise increasing sample counts (10-2000
with step size 50) using both uniformly random and jittered sampling. Finally, for each
sampling method and sample count you compute the MSE of the linear RGB values over
a specified region or the image

1

N

∑
i

[|Riref −Ritest |2 + |Giref −Gitest|2 + |Biref −Bitest |2],

where i is the index of pixels contained within an N -pixel region. Riref , Giref , Biref and
Ritest , Gitest , Bitest indicate the linear RGB values of the i-th pixel in the reference image
and the test image (rendered with either jittered or random sampling), respectively. Plot
the MSE against the increasing number of samples in log-log scale for both sampling
strategies and comment on your findings.

6

1 {"nbounces":3,
2 "camera":{
3 "type":"pinhole",
4 "width":800,
5 "height":800
6 },
7 "scene":{
8 "backgroundcolor":[0.01, 0.01, 0.01],
9 "lightsources":[

10 {
11 "type":"pointlight",
12 "position":[0.1, 0.1, 0.1],
13 "intensity":[1., 1., 1.]
14 }
15],
16 "shapes":[
17 {
18 "type":"sphere",
19 "center": [0.2, 0.3, 0.4],
20 "radius":0.3,
21 "material":{
22 "ks":0.4,
23 "kd":0.8,
24 "specularexponent":3,
25 "diffusecolor":[0.4, 0.3, 0.4]
26 }
27 },
28 {
29 "type":"sphere",
30 "center": [0.2, 0.5, 0.7],
31 "radius":0.1,
32 "material":{
33 "ks":0.6,
34 "kd":0.2,
35 "specularexponent":10000,
36 "diffusecolor":[0.4, 0.4, 0.4]
37 }
38 }
39]
40 }
41 }

Figure 2: Input file example

7

