
Computer Graphics Tutorial 3

In this tutorial, we will handle somemore in-depthWebGL code, and write some shaders
for lighting effects and displacement mapping.

Running the Code

• Extract the given zip file from the course webpage (http://www.inf.ed.ac.uk/
teaching/courses/cg/index2017.html#Tutorials).

• Open "tutorial_3.html" in a WebGL 2.0 compatible browser (recent versions of
Firefox, Chrome, or Opera). Note, previous exercises did not require WebGL 2.0,
so on some browsers you may need to enable this manually. On Chrome, if you
get the error: "Cannot read property ’viewport’ of null", you can en-
able WebGL 2.0 via the setting: chrome://flags/#enable-es3-apis.

• If usingGoogle Chrome, youmust open it via the command linewith google-chrome
–allow-file-access-from-files, which allows the 3Dmodel file to be loaded.

• If using Google Chrome, helpful debugging tools can be opened by pressing F12.

• If using Firefox, debugging is opened via Ctrl + Shift + K, or via Firebug.

• You can ignore WebGL:INVALID_VALUE:warnings for enableVertexAttribArray
and vertexAttribPointer until you have completed all parts of the exercise.

Questions

1: Loading the 3D Model

In Tutorial 2, we loaded a simple 3D cube model, which was defined only by its vertex
positions in 3D space. Now, we will load up a more complex model with vetex positions,
normals, and texture UV coordinates.

http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials
http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials

The format of the sphere.obj file is similar to the previous .obj file we loaded, so you
may refer back to that code, or look at the example solutions online.
The different types of lines in the sphere.obj file we want to load are as follows:

v 1 . 0 −1.0 −1.0

Lines starting with "v" define the 3D coordinates of each vertex in the model.

v t 0 . 5 0 . 5

Lines starting with "vt" define the 2D texture coordinates for each vertex in the model.

vn 1 . 0 −1.0 −1.0

Lines starting with "vn" define the 3D normal direction of each vertex in the model.

f 1 / 1 / 1 2 8 / 2 / 2 2 7 / 3 / 3

Lines starting with "f" define a triangular face of the model. Face lines have parts sepa-
rated by spaces (one for each vertex in the triangular face). Each segment has 3 numbers
separated by slashes:

pos / t e x / norm

• pos - index of that vertex’s 3D position from the list of "v" lines.

• tex - index of that vertex’s 2D texture UV coordinates from the list of "vt" lines.

• norm - index of that vertex’s 3D normal direction from the list of "vn" lines.

This is similar to the format of the cube.obj file from the previous tutorial, but instead
of just a single index for for the vertex’s position, 3 indices are given for its position,
texture coordinates, and normal. NOTE: as before, the indexing scheme starts at 1.
Your task is to fill in themissing code in the loadMeshData(s) function of load_obj.js
such that it fills in the vertexBuffer variable with the correct vertex positions, uvs, and
normals. This buffer should be a single array of floats. Each face has 3 vertices. Each
vertex has 8 floats (3 pos, 2 tex, 3 norm). The final vertexBuffer variable will have
122880 values in it. An example of the buffer should be filled in is shown below:

v 1 . 0 1 . 0 1 . 0
v 2 . 0 2 . 0 2 . 0
v 3 . 0 3 . 0 3 . 0
v t 0 . 7 0 . 7
v t 0 . 8 0 . 8
v t 0 . 9 0 . 9
vn 0 . 1 0 . 1 0 . 1
vn 0 . 2 0 . 2 0 . 2
vn 0 . 3 0 . 3 0 . 3
f 1 / 1 / 1 2 / 2 / 2 3 / 3 / 3
. . .

would have a vertex buffer filled in like:

[1 . 0 , 1 . 0 , 1 . 0 , 0 . 7 , 0 . 7 , 0 . 1 , 0 . 1 , 0 . 1 ,
2 . 0 , 2 . 0 , 2 . 0 , 0 . 8 , 0 . 8 , 0 . 2 , 0 . 2 , 0 . 2 ,
3 . 0 , 3 . 0 , 3 . 0 , 0 . 9 , 0 . 9 , 0 . 3 , 0 . 3 , 0 . 3 , . . .]

When finished, you should see a flat green sphere on the screen:

2: Displacement Mapping

Now, we will edit the vertex shader in shaders.js so that it performs displacement
mapping. Edit the vertex shader so that it:

• Samples a colour from displacementMapTexture at the coordinates vertUV.

• Takes the "red" component of that colour (the image is greyscale, so r=g=b).

• Multiples this by the weighting factor of displacementScale

• Displaces the output vertex position by this amount along the normalized direction
of the vertex normal from vertNormal

The displaced sphere should look like:

This displacement map is generated from the texture loaded from displ.png. Feel
free to edit this, or examine the texture loading code in common/texturing.js and the
binding code in the renderModel() function of common/simple_drawing if you are
interested in how the texture is loaded and bound to the shader variables in WebGL.

3: Flat Phong Lighting

Edit the vertex shader in shaders.js to performs phong illumination (see the lecture
slides and textbook). Use the transformed normal value n, the vertex’s position in global
space (apply the correct transformation matrix to it), and the included lighting and ma-
terial properties. Assign the final colour to outCol for the fragment shader to use.

(a) Sphere (b) Displaced

4: Gouraud Shading

We can make this smoother by using per-vertex, rather than per-face lighting, and having
the fragment shader interpolate the colours smoothly between the values at each vertex of
the relevant triangle. This interpolated per-vertex lighting is known as Gouraud shading.
Doing this is very simple in GLSL. By default, out variables from the vertex shader are
interpolated between the triangle’s vertices. This means the corresponding in variables
already contain interpolated values by default.
However, the variable outCol has used the GLSL flat keyword when defining it. This
means that a single value from a single vertex is used across the entire triangular face.
To enable smooth Gouraud shading, simply delete the flat keyword in front of outCol
in both the fragment and vertex shaders, and observe the results:

(c) Sphere (d) Displaced

