
Computer Graphics Tutorial 4

In this tutorial, we will explore raytracing. The code for this assignment is based on
the simple WebGL raytracing project here: http://www.mbroecker.com/project_
webgltracer.html . The work will involve making edits to this existing ray-tracer
code base.

Running the Code

• Extract the given zip file from the course webpage (http://www.inf.ed.ac.uk/
teaching/courses/cg/index2017.html#Tutorials).

• If usingGoogle Chrome, youmust open it via the command linewith google-chrome
–allow-file-access-from-files, which allows the 3Dmodel file to be loaded.

• If using Google Chrome, helpful debugging tools can be opened by pressing F12.

• If using Firefox, debugging is opened via Ctrl + Shift + K, or via Firebug.

Questions

1: Exploring the Raytracer

Open WebGL_Raytracer.html in a WebGL compatible browser. You should see:

http://www.mbroecker.com/project_webgltracer.html
http://www.mbroecker.com/project_webgltracer.html
http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials
http://www.inf.ed.ac.uk/teaching/courses/cg/index2017.html#Tutorials


The shaders for this program are located in the raytracer.webgl/shaders direc-
tory. If you open one of them, you may notice that they use a slightly different syn-
tax from prior assignments, which used WebGL 2.0 shaders. The main difference is
that per-vertex input variables are labeled as attribute instead of in, and the in/out
variables for passing information from the vertex to the fragment shader are labeled
varying. Some functions such as transpose and inverse are missing from this ver-
sion of OpenGL too.
The filewewill be editing during this tutorial is raytracer.webgl/shaders/raytracer.frag.
Other files of note are shader.jswhich loads in all the shaders and textures, and records
which uniform variables the shaders use. The main.js file is where the central rendering
loop occurs, and will set the vaules of uniform values each frame.

2: Sphere-mapped Skybox

Calculating Sphere-Map UVs

We will explore two different methods of drawing a distant static background in our ray
tracing environment. The first will be sphere mapping, which acts as if the camera were
on the inside of a spherical dome. We will use the below image for our sky sphere:
Open raytracer.webgl/shaders/raytracer.frag, and scroll down to the mainmethod,
where the ray-tracing loop is called. Whenever a ray misses objects in the scene, it will
need to return a default colour. For now, it these rays return their XYZ direction as an
RGB vector, but we will change this to read from our sphereMap texture.



To work out which UV coordinates to use in our sphere map, we take the X and Y
coordinates of ray.direction, and need tomap them on to the 2D texture’s coordinates
so that they match up with the coordinates shown in the diagram below (black numbers
are texture coordinates, and blue numbers are from the ray direction XY coordinates).
Because the XY coordinates came from our normalized view vector, they will naturally
fall within the r = 1 circle on our sphere map texture.
Once you have calculated the UV coordinates for each missed ray, use the texture2D
function to read the colour from the sphereMap texture.

Reflections

Edit the main method of raytracer.webgl/shaders/raytracer.frag so that the
environment from the sphere map also shows up in the reflections on the spheres. Setting
the default color value to the sphere mapped texture only causes it to appear in the first
cast of a ray, so locate the portion of the code where missed reflection rays are coloured,
and make them choose a colour from the sphere map too.

Different Maps

Download some new spheremaps fromGoogle images. Rename them sphere_map.png,
and text how well they work in this environment, and how visible their seams are.



3: Cube-mapped Skybox

Sampling a Cube Map

If we look around in the sphere-mapped world, there are very noticeable seams on the
edges, which are caused by distortions around the edges of our sphere-mapped image.
Here, we will demonstrate a method for reducing these artefacts via a different environ-



ment mapping technique.

This time, we will sample from a cube map, which has been generated from 6 sep-
arate images, one for each face of a cube (posx, posy, posz, negx, negy, negz). In
raytracer.webgl/shaders/raytracer.frag this has been set up in the cubeMap

texture variable. InWebGL 1.0, we can sample from a cubemap using the textureCube
function. Instead of 2D UV coordinates, this function will use 3D coordinates to help it
select the correct cube face to read from. Sample the environment colour from this cube
map using ray.direction as the texture coordinates.

Reflections

Make sure the cube mapped sky box shows up in the reflections on the spheres too (as
in part 2).

Different Maps

Download a cube mapped image (Google images brings up numerous). Divide it into
6 parts (each part should be a square with a power-of-2 number of pixels). Back up
the old cube map images, and rename your new images (posx.png, posy.png, posz.png,
negx.png, negy.png, negz.png) corresponding to the correct faces of the cube. Run the
ray tracer, and make sure your cube faces connect smoothly with one another, including
the top segment visible in the reflections of the spheres. You can rename the files, or
change the ordering in the imageUrls array at the bottom of the shader.js file.



3: Raytracing Cylinders

Edit raytracer.webgl/shaders/raytracer.frag to fill in the intersectRayCylinder
function. You can re-use properties of the spheres such as their positions, and using their
radius as the cylinder’s height. You may simplify this task by assuming the cylinder is
never rotated, and their flat sides are parallel to the ground plane. Their radius and length
are equal too.
Youmay find the intersection equations available http://www.cl.cam.ac.uk/teaching/
1999/AGraphHCI/SMAG/node2.html#SECTION00023200000000000000 useful for this
excersise, and reading the previous code and equations about ray-sphere intersections
may be helpful too.

http://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node2.html#SECTION00023200000000000000
http://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node2.html#SECTION00023200000000000000

