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This week
What is an image?

What is image processing?

Point processing

Linear (Spatial) filters 

Frequency domain

Deep image processing



Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 30 meters becomes the portrait 

of Abraham Lincoln”, 1976

Slide credits: A. Efros



Why?





A set of basis functions

This change of basis has a special name…

Teases away fast vs. slow changes in the image.

Slide Credit: A. Efros



Jean Baptiste Joseph Fourier (1768-1830)

Fourier had a crazy idea (1807):

Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

don’t believe it?  

Neither did Lagrange, Laplace, 
Poisson and other big wigs

Not translated into English until 
1878!

but it’s (mostly) true!

called Fourier Series

...the manner in which the author arrives at these 

equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something 

to be desired on the score of generality and even 

rigour.

Laplace

Lagrange
Legendre

Slide Credit: A. Efroshttp://www-history.mcs.st-andrews.ac.uk/Biographies/Fourier.html

http://www-history.mcs.st-andrews.ac.uk/Biographies/Fourier.html


1D Fourier Series

Example: A step edge

𝑓 𝑥 = ቊ
−1 if x < 0
1 otherwise

Fourier Decomposition

𝑓 𝑥 = ෍

𝑛=1

𝑎𝑛 sin 𝑛𝑥

𝑎𝑛 =
1

𝜋
න
−𝜋

𝜋

𝑓 𝑥 sin 𝑛𝑥 𝑑𝑥

=
2

𝜋
න
0

𝜋

𝑓 𝑥 sin 𝑛𝑥 𝑑𝑥 = ቐ
4

𝑛𝜋
𝑖𝑓 n is odd

0 otherwise

𝑓 𝑥 = ෍

𝑛=1

4

2𝑛 − 1 𝜋
sin 2𝑛 − 1 𝑥

𝑥

Slide Credit: A. Zisserman



1D Fourier Series

Example: A square wave

= +

𝑓 𝑥 = 𝑠𝑖𝑛𝑥 +
1

3
sin 3𝑥

Slide Credit: A. Zisserman



1D Fourier Series

Example: A square wave

𝑓 𝑥 = 𝑠𝑖𝑛𝑥 +
1

3
sin 3𝑥 +

1

5
sin 5𝑥

Slide Credit: A. Zisserman



1D Fourier Series

Example: A square wave

𝑓 𝑥 = 𝑠𝑖𝑛𝑥 +
1

3
sin 3𝑥 +

1

5
sin 5𝑥 +⋯

Slide Credit: A. Zisserman



1D Fourier Series

Example: A square wave

𝑓 𝑥 =
4

𝜋
(𝑠𝑖𝑛𝑥 +

1

3
sin 3𝑥 +

1

5
sin 5𝑥 +⋯)

Slide Credit: A. Zisserman



𝑀𝑓 𝑥 = 𝐹 𝜔

⋮

Fourier series: just a change of basis

Slide Credit: A. Zisserman

=



𝑀−1𝐹 𝜔 = 𝑓 𝑥

Fourier series: just a change of basis

Slide Credit: A. Zisserman

=

⋮



1D/2D Fourier Transform

Transform pair for 1D

F 𝑢 = ∞−׬
∞

𝑓 𝑥 𝑒−𝑗2𝜋𝑢𝑥𝑑𝑥,

𝑓 𝑥 = ∞−׬
∞

𝐹 𝑢 𝑒𝑗2𝜋𝑢𝑥𝑑𝑢

𝑒𝑗2𝜋𝑢𝑥 = cos 2𝜋𝑢𝑥 + 𝑗𝑠𝑖𝑛(2𝜋𝑢𝑥)

Transform pair for 2D

F 𝑢, 𝑣 = ∞−׬
∞

∞−׬
∞

𝑓 𝑥, 𝑦 𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦,

𝑓 𝑥, 𝑦 = ∞−׬
∞

∞−׬
∞

𝐹 𝑢, 𝑣 𝑒𝑗2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣

• F 𝑢, 𝑣 is complex in general,

• F 𝑢, 𝑣 = 𝐹𝑅 𝑢, 𝑣 + jFC 𝑢, 𝑣

• F 𝑢, 𝑣 is the magnitude spectrum

• arctan(
𝐹𝐶 𝑢,𝑣

𝐹𝑅 𝑢,𝑣
) is the phase spectrum

Slide Credit: A. Zisserman



Sinusoidal Waves

Fourier Transform is based on a decomposition into orthogonal basis 
functions:

𝑒𝑗2𝜋𝑢𝑥 = cos 2𝜋𝑢𝑥 + 𝑗𝑠𝑖𝑛 2𝜋𝑢𝑥

Orthogonality: http://ms.mcmaster.ca/courses/20102011/term4/math2zz3/Lecture1.pdf

The maxima and minima occur when

2𝜋 𝑢𝑥 + 𝑣𝑦 = 𝑛𝜋

write 𝑢𝑥 + 𝑣𝑦 in vector notation with 𝐮 = u, 𝑣 𝑇 and 𝐱 = x, 𝑦 𝑇 then

2𝜋 𝑢𝑥 + 𝑣𝑦 = 2𝜋𝒖 ⋅ 𝒙 = 𝑛𝜋

are sets of equally spaced parallel lines with normal 𝒖 and 

wavelength 
1

𝑢2+𝑣2

Slide Credit: A. Zisserman

http://ms.mcmaster.ca/courses/20102011/term4/math2zz3/Lecture1.pdf


The real component of Fourier basis 

elements shown as intensity images

• Plot a basis element --- or rather, its 

real part --- as a function of x,y for 

some fixed (u,v). We get a function 

that is constant when (ux+vy) is 

constant. 

• The magnitude of the vector (u, v) 

gives a frequency, and its direction 

gives an orientation. The function is a 

sinusoid with this frequency along the 

direction, and constant perpendicular 

to the direction.

Slide Credit: B. Freeman



Here the magnitude of the vector (u, 

v) is larger than the previous one and 

angle is different

Slide Credit: B. Freeman



Image Credit: Forsyth & Ponce



original                              low pass                           high pass

𝑓(𝑥, 𝑦)

𝐹(𝑢, 𝑣)



Convolution Theorem

𝑓 𝑥, 𝑦 ∗ ℎ 𝑥, 𝑦 ֞𝐹 𝑢, 𝑣 𝐻 𝑢, 𝑣

In words: the Fourier transform of the convolution of two      

functions is the product of their individual Fourier transforms

Why is it so important?

Because linear filtering operations can be carried out by simple    

multiplications in the Fourier domain

Space convolution = frequency multiplication

Slide Credit: A. Zisserman



The link between operations in the action of linear filters and frequency domain 

Example

Convolution Theorem

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)

×

𝐹(𝑢, 𝑣) 𝐺(𝑢, 𝑣)

Fourier 

transform
inverse Fourier 

transform



Image Blending (Oliva etal 2006)

Fourier Transform: Applications



Forensic application

Fourier Transform: Applications

Image enhancement: Lunar orbital image

𝐹(𝑢, 𝑣)

𝐹(𝑢, 𝑣) Remove 

peaks

Remove 

peaks

Lines 

removed

Periodic bg

removed

Slide Credit: A. Zisserman



Deep image processing

More advanced applications

So far, we assumed that we have the 

• ideal filters to enhance images (to blur, sharpen, resize)

• ideal models and priors (to super-resolve, remove noise)

What if we had a “learning machine” that can learn to map an input to output?

Black Box

Learning Machine

Image Credit: Pathak et al.



Perceptron [Rosenblatt 1957]

𝑓 𝑥 = ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑛 + 𝑏 , 𝑦 = ቊ
1 if 𝑓 𝑥 > 0
0 otherwise

Image Credit: C. Barnes

Inputs

Output (Class)

Bias b:

arbitrary, 

learned 

parameterWeights: arbitrary,

learned parameters



Activation functions (𝜎)

MultiLayer Perceptron (MLP)

Universal Approximation Theorem: a single hidden layer and linear output layer 

can approximate any continuous function.

𝐻0 = ℎ01, ℎ02, … , ℎ0𝑛 = 𝑥1, 𝑥2, … , 𝑥𝑛

𝐻1 = ℎ1⋅ = 𝜎 𝑤1⋅ ⋅ ℎ0⋅
𝑂 = 𝜎(𝑊2 ⋅ 𝜎(𝑊1 ⋅ 𝐻0))

Image Credit: Wikipedia

𝑥1

𝑥2

𝑥𝑛

ℎ11

ℎ12

ℎ1𝑘

ℎ13

ℎ21

ℎ22

𝑜1

𝑜2



Convolutional Neural Networks [Lecun et al 1998]

𝐻𝑙+1 = 𝜎(𝐻𝑙 ∗ 𝑊𝑙1,𝑊𝑙2, … ,𝑊𝑙𝑘 + [𝑏𝑙1, 𝑏𝑙2, … , 𝑏𝑙𝑘])

Layer (l+1) 

feature map

Activation 

function

Layer (l)

feature map

Layer (l) convolution 

filters

Biases

http://www.deeplearningbook.org/



Deep learning guide

When to use it?

• Do you have plenty of input data (images, videos, text, audio)?

• Do you have supervisory signal for each input point (image and its label “cat”)?

• Do you have enough computation resources (this means expensive graphics 

cards)? Or are you working for Google, Facebook ☺ ? 

• Can you specify a good compatibility function (loss) between output and desired 

output?



Image Inpainting (Pathak et al. 2016)

Back to applications

Goal: Generate the contents of an arbitrary image region conditioned on its 

surroundings

Supervision is free and infinite!

CNN



Image colorization (Zhang et al 2016)

More applications

Goal: Generate realistic colours for a given a grayscale image

CNN

Grayscale Output Ground-truth



Image colorization (Zhang et al 2016)

Applications

Selection of loss function



Image colorization (Zhang et al 2016)

Applications

Ground Truth Class w/ RebalancingL2 Regression



Style Transfer (Gatys et al 2015)

Applications

Goal: Create artistic images of high perceptual quality

Method: Match style and content of source and target images

• Style representation: correlations between the different filter responses over the spatial 

extent of feature maps

• Content representation: different filter responses over the spatial extent of feature maps

• 𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝐿𝑜𝑠𝑠𝑠𝑡𝑦𝑙𝑒



Style Transfer (Gatys et al 2015)

Applications

Goal: Create artistic images of high perceptual quality



Style Transfer (Gatys et al 2015)

Applications



Generative Adversarial Networks (GANs) (Goodfellow et al 2014)

Applications

We can colorize, inpaint and stylize images by using neural networks.

How about generating new images?

Can we use L2 loss?

What kind of loss can we use?

CNN Loss?



Fake?

10 Pounds10 Pounds

Generative Adversarial Networks (Goodfellow et al 2014)

Applications

Density estimation: We want outputs of our model (parametrized by 𝜽) to be similar 

to distribution of input data

We have a pair of networks, Generator (G) and Discriminator (D)

• They fight against each other

• G goal: make its probability distribution similar to training set and make 

prediction that G cannot distinguish

• D goal: distinguish between G’s prediction and real data



PPGAN (Nguyen et al 2016)

Applications



GAN

Applications

Bad examples:

Neural Photo Editing with Introspective Adversarial Networks

https://www.youtube.com/watch?v=FDELBFSeqQs

https://www.youtube.com/watch?v=FDELBFSeqQs


Notes

• B1: Chapter 9.4 Fourier Transform

• Additional reading: http://www.deeplearningbook.org/ Part II, Chapter 6

http://www.deeplearningbook.org/

